Description: Given a is equivalent to T., Given b is equivalent to F., there exists a proof for that a implies b is false. (Contributed by Jarvin Udandy, 7-Sep-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | aifftbifffaibif.1 | |- ( ph <-> T. ) |
|
aifftbifffaibif.2 | |- ( ps <-> F. ) |
||
Assertion | aifftbifffaibif | |- ( ( ph -> ps ) <-> F. ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aifftbifffaibif.1 | |- ( ph <-> T. ) |
|
2 | aifftbifffaibif.2 | |- ( ps <-> F. ) |
|
3 | 1 | aistia | |- ph |
4 | 2 | aisfina | |- -. ps |
5 | 3 4 | pm3.2i | |- ( ph /\ -. ps ) |
6 | annim | |- ( ( ph /\ -. ps ) <-> -. ( ph -> ps ) ) |
|
7 | 6 | biimpi | |- ( ( ph /\ -. ps ) -> -. ( ph -> ps ) ) |
8 | 5 7 | ax-mp | |- -. ( ph -> ps ) |
9 | 8 | bifal | |- ( ( ph -> ps ) <-> F. ) |