Metamath Proof Explorer


Theorem aifftbifffaibif

Description: Given a is equivalent to T., Given b is equivalent to F., there exists a proof for that a implies b is false. (Contributed by Jarvin Udandy, 7-Sep-2020)

Ref Expression
Hypotheses aifftbifffaibif.1
|- ( ph <-> T. )
aifftbifffaibif.2
|- ( ps <-> F. )
Assertion aifftbifffaibif
|- ( ( ph -> ps ) <-> F. )

Proof

Step Hyp Ref Expression
1 aifftbifffaibif.1
 |-  ( ph <-> T. )
2 aifftbifffaibif.2
 |-  ( ps <-> F. )
3 1 aistia
 |-  ph
4 2 aisfina
 |-  -. ps
5 3 4 pm3.2i
 |-  ( ph /\ -. ps )
6 annim
 |-  ( ( ph /\ -. ps ) <-> -. ( ph -> ps ) )
7 6 biimpi
 |-  ( ( ph /\ -. ps ) -> -. ( ph -> ps ) )
8 5 7 ax-mp
 |-  -. ( ph -> ps )
9 8 bifal
 |-  ( ( ph -> ps ) <-> F. )