Metamath Proof Explorer


Theorem aisfbistiaxb

Description: Given a is equivalent to F., Given b is equivalent to T., there exists a proof for a-xor-b. (Contributed by Jarvin Udandy, 31-Aug-2016)

Ref Expression
Hypotheses aisfbistiaxb.1
|- ( ph <-> F. )
aisfbistiaxb.2
|- ( ps <-> T. )
Assertion aisfbistiaxb
|- ( ph \/_ ps )

Proof

Step Hyp Ref Expression
1 aisfbistiaxb.1
 |-  ( ph <-> F. )
2 aisfbistiaxb.2
 |-  ( ps <-> T. )
3 1 aisfina
 |-  -. ph
4 2 aistia
 |-  ps
5 3 4 abnotataxb
 |-  ( ph \/_ ps )