Description: Given a is equivalent to F. , there exists a proof for not a. (Contributed by Jarvin Udandy, 30-Aug-2016)
Ref | Expression | ||
---|---|---|---|
Hypothesis | aisfina.1 | |- ( ph <-> F. ) |
|
Assertion | aisfina | |- -. ph |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aisfina.1 | |- ( ph <-> F. ) |
|
2 | nbfal | |- ( -. ph <-> ( ph <-> F. ) ) |
|
3 | 1 2 | mpbir | |- -. ph |