Metamath Proof Explorer


Theorem aistbisfiaxb

Description: Given a is equivalent to T., Given b is equivalent to F. there exists a proof for a-xor-b. (Contributed by Jarvin Udandy, 31-Aug-2016)

Ref Expression
Hypotheses aistbisfiaxb.1
|- ( ph <-> T. )
aistbisfiaxb.2
|- ( ps <-> F. )
Assertion aistbisfiaxb
|- ( ph \/_ ps )

Proof

Step Hyp Ref Expression
1 aistbisfiaxb.1
 |-  ( ph <-> T. )
2 aistbisfiaxb.2
 |-  ( ps <-> F. )
3 1 aistia
 |-  ph
4 2 aisfina
 |-  -. ps
5 3 4 abnotbtaxb
 |-  ( ph \/_ ps )