Metamath Proof Explorer
Description: Given a is equivalent to T., Given b is equivalent to F. there exists a
proof for a-xor-b. (Contributed by Jarvin Udandy, 31-Aug-2016)
|
|
Ref |
Expression |
|
Hypotheses |
aistbisfiaxb.1 |
|- ( ph <-> T. ) |
|
|
aistbisfiaxb.2 |
|- ( ps <-> F. ) |
|
Assertion |
aistbisfiaxb |
|- ( ph \/_ ps ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
aistbisfiaxb.1 |
|- ( ph <-> T. ) |
2 |
|
aistbisfiaxb.2 |
|- ( ps <-> F. ) |
3 |
1
|
aistia |
|- ph |
4 |
2
|
aisfina |
|- -. ps |
5 |
3 4
|
abnotbtaxb |
|- ( ph \/_ ps ) |