Description: The empty set is the unique class which is a subclass of any set. (Contributed by AV, 24-Aug-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | al0ssb | |- ( A. y X C_ y <-> X = (/) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex | |- (/) e. _V |
|
2 | sseq2 | |- ( y = (/) -> ( X C_ y <-> X C_ (/) ) ) |
|
3 | ss0b | |- ( X C_ (/) <-> X = (/) ) |
|
4 | 2 3 | bitrdi | |- ( y = (/) -> ( X C_ y <-> X = (/) ) ) |
5 | 1 4 | spcv | |- ( A. y X C_ y -> X = (/) ) |
6 | 0ss | |- (/) C_ y |
|
7 | 6 | ax-gen | |- A. y (/) C_ y |
8 | sseq1 | |- ( X = (/) -> ( X C_ y <-> (/) C_ y ) ) |
|
9 | 8 | albidv | |- ( X = (/) -> ( A. y X C_ y <-> A. y (/) C_ y ) ) |
10 | 7 9 | mpbiri | |- ( X = (/) -> A. y X C_ y ) |
11 | 5 10 | impbii | |- ( A. y X C_ y <-> X = (/) ) |