Metamath Proof Explorer


Theorem albi

Description: Theorem 19.15 of Margaris p. 90. (Contributed by NM, 24-Jan-1993)

Ref Expression
Assertion albi
|- ( A. x ( ph <-> ps ) -> ( A. x ph <-> A. x ps ) )

Proof

Step Hyp Ref Expression
1 biimp
 |-  ( ( ph <-> ps ) -> ( ph -> ps ) )
2 1 al2imi
 |-  ( A. x ( ph <-> ps ) -> ( A. x ph -> A. x ps ) )
3 biimpr
 |-  ( ( ph <-> ps ) -> ( ps -> ph ) )
4 3 al2imi
 |-  ( A. x ( ph <-> ps ) -> ( A. x ps -> A. x ph ) )
5 2 4 impbid
 |-  ( A. x ( ph <-> ps ) -> ( A. x ph <-> A. x ps ) )