Metamath Proof Explorer


Theorem albid

Description: Formula-building rule for universal quantifier (deduction form). (Contributed by Mario Carneiro, 24-Sep-2016)

Ref Expression
Hypotheses albid.1
|- F/ x ph
albid.2
|- ( ph -> ( ps <-> ch ) )
Assertion albid
|- ( ph -> ( A. x ps <-> A. x ch ) )

Proof

Step Hyp Ref Expression
1 albid.1
 |-  F/ x ph
2 albid.2
 |-  ( ph -> ( ps <-> ch ) )
3 1 nf5ri
 |-  ( ph -> A. x ph )
4 3 2 albidh
 |-  ( ph -> ( A. x ps <-> A. x ch ) )