Description: Formula-building rule for universal quantifier (deduction form). (Contributed by NM, 26-May-1993)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | albidh.1 | |- ( ph -> A. x ph ) |
|
| albidh.2 | |- ( ph -> ( ps <-> ch ) ) |
||
| Assertion | albidh | |- ( ph -> ( A. x ps <-> A. x ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | albidh.1 | |- ( ph -> A. x ph ) |
|
| 2 | albidh.2 | |- ( ph -> ( ps <-> ch ) ) |
|
| 3 | 1 2 | alrimih | |- ( ph -> A. x ( ps <-> ch ) ) |
| 4 | albi | |- ( A. x ( ps <-> ch ) -> ( A. x ps <-> A. x ch ) ) |
|
| 5 | 3 4 | syl | |- ( ph -> ( A. x ps <-> A. x ch ) ) |