Metamath Proof Explorer


Theorem albidh

Description: Formula-building rule for universal quantifier (deduction form). (Contributed by NM, 26-May-1993)

Ref Expression
Hypotheses albidh.1
|- ( ph -> A. x ph )
albidh.2
|- ( ph -> ( ps <-> ch ) )
Assertion albidh
|- ( ph -> ( A. x ps <-> A. x ch ) )

Proof

Step Hyp Ref Expression
1 albidh.1
 |-  ( ph -> A. x ph )
2 albidh.2
 |-  ( ph -> ( ps <-> ch ) )
3 1 2 alrimih
 |-  ( ph -> A. x ( ps <-> ch ) )
4 albi
 |-  ( A. x ( ps <-> ch ) -> ( A. x ps <-> A. x ch ) )
5 3 4 syl
 |-  ( ph -> ( A. x ps <-> A. x ch ) )