Description: Inference adding universal quantifier to both sides of an equivalence. (Contributed by NM, 7-Aug-1994)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | albii.1 | |- ( ph <-> ps ) |
|
| Assertion | albii | |- ( A. x ph <-> A. x ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | albii.1 | |- ( ph <-> ps ) |
|
| 2 | albi | |- ( A. x ( ph <-> ps ) -> ( A. x ph <-> A. x ps ) ) |
|
| 3 | 2 1 | mpg | |- ( A. x ph <-> A. x ps ) |