Metamath Proof Explorer


Theorem albii

Description: Inference adding universal quantifier to both sides of an equivalence. (Contributed by NM, 7-Aug-1994)

Ref Expression
Hypothesis albii.1
|- ( ph <-> ps )
Assertion albii
|- ( A. x ph <-> A. x ps )

Proof

Step Hyp Ref Expression
1 albii.1
 |-  ( ph <-> ps )
2 albi
 |-  ( A. x ( ph <-> ps ) -> ( A. x ph <-> A. x ps ) )
3 2 1 mpg
 |-  ( A. x ph <-> A. x ps )