Description: Split a biconditional and distribute quantifier. (Contributed by NM, 18-Aug-1993)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | albiim | |- ( A. x ( ph <-> ps ) <-> ( A. x ( ph -> ps ) /\ A. x ( ps -> ph ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfbi2 | |- ( ( ph <-> ps ) <-> ( ( ph -> ps ) /\ ( ps -> ph ) ) ) |
|
| 2 | 1 | albii | |- ( A. x ( ph <-> ps ) <-> A. x ( ( ph -> ps ) /\ ( ps -> ph ) ) ) |
| 3 | 19.26 | |- ( A. x ( ( ph -> ps ) /\ ( ps -> ph ) ) <-> ( A. x ( ph -> ps ) /\ A. x ( ps -> ph ) ) ) |
|
| 4 | 2 3 | bitri | |- ( A. x ( ph <-> ps ) <-> ( A. x ( ph -> ps ) /\ A. x ( ps -> ph ) ) ) |