Metamath Proof Explorer


Theorem albiim

Description: Split a biconditional and distribute quantifier. (Contributed by NM, 18-Aug-1993)

Ref Expression
Assertion albiim
|- ( A. x ( ph <-> ps ) <-> ( A. x ( ph -> ps ) /\ A. x ( ps -> ph ) ) )

Proof

Step Hyp Ref Expression
1 dfbi2
 |-  ( ( ph <-> ps ) <-> ( ( ph -> ps ) /\ ( ps -> ph ) ) )
2 1 albii
 |-  ( A. x ( ph <-> ps ) <-> A. x ( ( ph -> ps ) /\ ( ps -> ph ) ) )
3 19.26
 |-  ( A. x ( ( ph -> ps ) /\ ( ps -> ph ) ) <-> ( A. x ( ph -> ps ) /\ A. x ( ps -> ph ) ) )
4 2 3 bitri
 |-  ( A. x ( ph <-> ps ) <-> ( A. x ( ph -> ps ) /\ A. x ( ps -> ph ) ) )