Metamath Proof Explorer


Theorem alcomiwOLD

Description: Obsolete version of alcomiw as of 28-Dec-2023. (Contributed by NM, 10-Apr-2017) (Proof shortened by Wolf Lammen, 12-Jul-2022) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis alcomiw.1
|- ( y = z -> ( ph <-> ps ) )
Assertion alcomiwOLD
|- ( A. x A. y ph -> A. y A. x ph )

Proof

Step Hyp Ref Expression
1 alcomiw.1
 |-  ( y = z -> ( ph <-> ps ) )
2 1 biimpd
 |-  ( y = z -> ( ph -> ps ) )
3 2 cbvalivw
 |-  ( A. y ph -> A. z ps )
4 3 alimi
 |-  ( A. x A. y ph -> A. x A. z ps )
5 ax-5
 |-  ( A. x A. z ps -> A. y A. x A. z ps )
6 1 biimprd
 |-  ( y = z -> ( ps -> ph ) )
7 6 equcoms
 |-  ( z = y -> ( ps -> ph ) )
8 7 spimvw
 |-  ( A. z ps -> ph )
9 8 2alimi
 |-  ( A. y A. x A. z ps -> A. y A. x ph )
10 4 5 9 3syl
 |-  ( A. x A. y ph -> A. y A. x ph )