Step |
Hyp |
Ref |
Expression |
1 |
|
alephord3 |
|- ( ( A e. On /\ B e. On ) -> ( A C_ B <-> ( aleph ` A ) C_ ( aleph ` B ) ) ) |
2 |
|
alephord3 |
|- ( ( B e. On /\ A e. On ) -> ( B C_ A <-> ( aleph ` B ) C_ ( aleph ` A ) ) ) |
3 |
2
|
ancoms |
|- ( ( A e. On /\ B e. On ) -> ( B C_ A <-> ( aleph ` B ) C_ ( aleph ` A ) ) ) |
4 |
1 3
|
anbi12d |
|- ( ( A e. On /\ B e. On ) -> ( ( A C_ B /\ B C_ A ) <-> ( ( aleph ` A ) C_ ( aleph ` B ) /\ ( aleph ` B ) C_ ( aleph ` A ) ) ) ) |
5 |
|
eqss |
|- ( A = B <-> ( A C_ B /\ B C_ A ) ) |
6 |
|
eqss |
|- ( ( aleph ` A ) = ( aleph ` B ) <-> ( ( aleph ` A ) C_ ( aleph ` B ) /\ ( aleph ` B ) C_ ( aleph ` A ) ) ) |
7 |
4 5 6
|
3bitr4g |
|- ( ( A e. On /\ B e. On ) -> ( A = B <-> ( aleph ` A ) = ( aleph ` B ) ) ) |
8 |
7
|
bicomd |
|- ( ( A e. On /\ B e. On ) -> ( ( aleph ` A ) = ( aleph ` B ) <-> A = B ) ) |