| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fvex |
|- ( aleph ` A ) e. _V |
| 2 |
|
fvex |
|- ( aleph ` B ) e. _V |
| 3 |
|
djuex |
|- ( ( ( aleph ` A ) e. _V /\ ( aleph ` B ) e. _V ) -> ( ( aleph ` A ) |_| ( aleph ` B ) ) e. _V ) |
| 4 |
1 2 3
|
mp2an |
|- ( ( aleph ` A ) |_| ( aleph ` B ) ) e. _V |
| 5 |
|
alephfnon |
|- aleph Fn On |
| 6 |
5
|
fndmi |
|- dom aleph = On |
| 7 |
6
|
eleq2i |
|- ( A e. dom aleph <-> A e. On ) |
| 8 |
7
|
notbii |
|- ( -. A e. dom aleph <-> -. A e. On ) |
| 9 |
6
|
eleq2i |
|- ( B e. dom aleph <-> B e. On ) |
| 10 |
9
|
notbii |
|- ( -. B e. dom aleph <-> -. B e. On ) |
| 11 |
|
df-dju |
|- ( (/) |_| (/) ) = ( ( { (/) } X. (/) ) u. ( { 1o } X. (/) ) ) |
| 12 |
|
xpundir |
|- ( ( { (/) } u. { 1o } ) X. (/) ) = ( ( { (/) } X. (/) ) u. ( { 1o } X. (/) ) ) |
| 13 |
|
xp0 |
|- ( ( { (/) } u. { 1o } ) X. (/) ) = (/) |
| 14 |
11 12 13
|
3eqtr2i |
|- ( (/) |_| (/) ) = (/) |
| 15 |
|
ndmfv |
|- ( -. A e. dom aleph -> ( aleph ` A ) = (/) ) |
| 16 |
|
ndmfv |
|- ( -. B e. dom aleph -> ( aleph ` B ) = (/) ) |
| 17 |
|
djueq12 |
|- ( ( ( aleph ` A ) = (/) /\ ( aleph ` B ) = (/) ) -> ( ( aleph ` A ) |_| ( aleph ` B ) ) = ( (/) |_| (/) ) ) |
| 18 |
15 16 17
|
syl2an |
|- ( ( -. A e. dom aleph /\ -. B e. dom aleph ) -> ( ( aleph ` A ) |_| ( aleph ` B ) ) = ( (/) |_| (/) ) ) |
| 19 |
15
|
adantr |
|- ( ( -. A e. dom aleph /\ -. B e. dom aleph ) -> ( aleph ` A ) = (/) ) |
| 20 |
16
|
adantl |
|- ( ( -. A e. dom aleph /\ -. B e. dom aleph ) -> ( aleph ` B ) = (/) ) |
| 21 |
19 20
|
uneq12d |
|- ( ( -. A e. dom aleph /\ -. B e. dom aleph ) -> ( ( aleph ` A ) u. ( aleph ` B ) ) = ( (/) u. (/) ) ) |
| 22 |
|
un0 |
|- ( (/) u. (/) ) = (/) |
| 23 |
21 22
|
eqtrdi |
|- ( ( -. A e. dom aleph /\ -. B e. dom aleph ) -> ( ( aleph ` A ) u. ( aleph ` B ) ) = (/) ) |
| 24 |
14 18 23
|
3eqtr4a |
|- ( ( -. A e. dom aleph /\ -. B e. dom aleph ) -> ( ( aleph ` A ) |_| ( aleph ` B ) ) = ( ( aleph ` A ) u. ( aleph ` B ) ) ) |
| 25 |
8 10 24
|
syl2anbr |
|- ( ( -. A e. On /\ -. B e. On ) -> ( ( aleph ` A ) |_| ( aleph ` B ) ) = ( ( aleph ` A ) u. ( aleph ` B ) ) ) |
| 26 |
|
eqeng |
|- ( ( ( aleph ` A ) |_| ( aleph ` B ) ) e. _V -> ( ( ( aleph ` A ) |_| ( aleph ` B ) ) = ( ( aleph ` A ) u. ( aleph ` B ) ) -> ( ( aleph ` A ) |_| ( aleph ` B ) ) ~~ ( ( aleph ` A ) u. ( aleph ` B ) ) ) ) |
| 27 |
4 25 26
|
mpsyl |
|- ( ( -. A e. On /\ -. B e. On ) -> ( ( aleph ` A ) |_| ( aleph ` B ) ) ~~ ( ( aleph ` A ) u. ( aleph ` B ) ) ) |
| 28 |
27
|
ex |
|- ( -. A e. On -> ( -. B e. On -> ( ( aleph ` A ) |_| ( aleph ` B ) ) ~~ ( ( aleph ` A ) u. ( aleph ` B ) ) ) ) |
| 29 |
|
alephgeom |
|- ( A e. On <-> _om C_ ( aleph ` A ) ) |
| 30 |
|
ssdomg |
|- ( ( aleph ` A ) e. _V -> ( _om C_ ( aleph ` A ) -> _om ~<_ ( aleph ` A ) ) ) |
| 31 |
1 30
|
ax-mp |
|- ( _om C_ ( aleph ` A ) -> _om ~<_ ( aleph ` A ) ) |
| 32 |
|
alephon |
|- ( aleph ` A ) e. On |
| 33 |
|
onenon |
|- ( ( aleph ` A ) e. On -> ( aleph ` A ) e. dom card ) |
| 34 |
32 33
|
ax-mp |
|- ( aleph ` A ) e. dom card |
| 35 |
|
alephon |
|- ( aleph ` B ) e. On |
| 36 |
|
onenon |
|- ( ( aleph ` B ) e. On -> ( aleph ` B ) e. dom card ) |
| 37 |
35 36
|
ax-mp |
|- ( aleph ` B ) e. dom card |
| 38 |
|
infdju |
|- ( ( ( aleph ` A ) e. dom card /\ ( aleph ` B ) e. dom card /\ _om ~<_ ( aleph ` A ) ) -> ( ( aleph ` A ) |_| ( aleph ` B ) ) ~~ ( ( aleph ` A ) u. ( aleph ` B ) ) ) |
| 39 |
34 37 38
|
mp3an12 |
|- ( _om ~<_ ( aleph ` A ) -> ( ( aleph ` A ) |_| ( aleph ` B ) ) ~~ ( ( aleph ` A ) u. ( aleph ` B ) ) ) |
| 40 |
31 39
|
syl |
|- ( _om C_ ( aleph ` A ) -> ( ( aleph ` A ) |_| ( aleph ` B ) ) ~~ ( ( aleph ` A ) u. ( aleph ` B ) ) ) |
| 41 |
29 40
|
sylbi |
|- ( A e. On -> ( ( aleph ` A ) |_| ( aleph ` B ) ) ~~ ( ( aleph ` A ) u. ( aleph ` B ) ) ) |
| 42 |
|
alephgeom |
|- ( B e. On <-> _om C_ ( aleph ` B ) ) |
| 43 |
|
ssdomg |
|- ( ( aleph ` B ) e. _V -> ( _om C_ ( aleph ` B ) -> _om ~<_ ( aleph ` B ) ) ) |
| 44 |
2 43
|
ax-mp |
|- ( _om C_ ( aleph ` B ) -> _om ~<_ ( aleph ` B ) ) |
| 45 |
|
djucomen |
|- ( ( ( aleph ` A ) e. _V /\ ( aleph ` B ) e. _V ) -> ( ( aleph ` A ) |_| ( aleph ` B ) ) ~~ ( ( aleph ` B ) |_| ( aleph ` A ) ) ) |
| 46 |
1 2 45
|
mp2an |
|- ( ( aleph ` A ) |_| ( aleph ` B ) ) ~~ ( ( aleph ` B ) |_| ( aleph ` A ) ) |
| 47 |
|
infdju |
|- ( ( ( aleph ` B ) e. dom card /\ ( aleph ` A ) e. dom card /\ _om ~<_ ( aleph ` B ) ) -> ( ( aleph ` B ) |_| ( aleph ` A ) ) ~~ ( ( aleph ` B ) u. ( aleph ` A ) ) ) |
| 48 |
37 34 47
|
mp3an12 |
|- ( _om ~<_ ( aleph ` B ) -> ( ( aleph ` B ) |_| ( aleph ` A ) ) ~~ ( ( aleph ` B ) u. ( aleph ` A ) ) ) |
| 49 |
|
entr |
|- ( ( ( ( aleph ` A ) |_| ( aleph ` B ) ) ~~ ( ( aleph ` B ) |_| ( aleph ` A ) ) /\ ( ( aleph ` B ) |_| ( aleph ` A ) ) ~~ ( ( aleph ` B ) u. ( aleph ` A ) ) ) -> ( ( aleph ` A ) |_| ( aleph ` B ) ) ~~ ( ( aleph ` B ) u. ( aleph ` A ) ) ) |
| 50 |
46 48 49
|
sylancr |
|- ( _om ~<_ ( aleph ` B ) -> ( ( aleph ` A ) |_| ( aleph ` B ) ) ~~ ( ( aleph ` B ) u. ( aleph ` A ) ) ) |
| 51 |
|
uncom |
|- ( ( aleph ` B ) u. ( aleph ` A ) ) = ( ( aleph ` A ) u. ( aleph ` B ) ) |
| 52 |
50 51
|
breqtrdi |
|- ( _om ~<_ ( aleph ` B ) -> ( ( aleph ` A ) |_| ( aleph ` B ) ) ~~ ( ( aleph ` A ) u. ( aleph ` B ) ) ) |
| 53 |
44 52
|
syl |
|- ( _om C_ ( aleph ` B ) -> ( ( aleph ` A ) |_| ( aleph ` B ) ) ~~ ( ( aleph ` A ) u. ( aleph ` B ) ) ) |
| 54 |
42 53
|
sylbi |
|- ( B e. On -> ( ( aleph ` A ) |_| ( aleph ` B ) ) ~~ ( ( aleph ` A ) u. ( aleph ` B ) ) ) |
| 55 |
28 41 54
|
pm2.61ii |
|- ( ( aleph ` A ) |_| ( aleph ` B ) ) ~~ ( ( aleph ` A ) u. ( aleph ` B ) ) |