Step |
Hyp |
Ref |
Expression |
1 |
|
2fveq3 |
|- ( x = (/) -> ( card ` ( aleph ` x ) ) = ( card ` ( aleph ` (/) ) ) ) |
2 |
|
fveq2 |
|- ( x = (/) -> ( aleph ` x ) = ( aleph ` (/) ) ) |
3 |
1 2
|
eqeq12d |
|- ( x = (/) -> ( ( card ` ( aleph ` x ) ) = ( aleph ` x ) <-> ( card ` ( aleph ` (/) ) ) = ( aleph ` (/) ) ) ) |
4 |
|
2fveq3 |
|- ( x = y -> ( card ` ( aleph ` x ) ) = ( card ` ( aleph ` y ) ) ) |
5 |
|
fveq2 |
|- ( x = y -> ( aleph ` x ) = ( aleph ` y ) ) |
6 |
4 5
|
eqeq12d |
|- ( x = y -> ( ( card ` ( aleph ` x ) ) = ( aleph ` x ) <-> ( card ` ( aleph ` y ) ) = ( aleph ` y ) ) ) |
7 |
|
2fveq3 |
|- ( x = suc y -> ( card ` ( aleph ` x ) ) = ( card ` ( aleph ` suc y ) ) ) |
8 |
|
fveq2 |
|- ( x = suc y -> ( aleph ` x ) = ( aleph ` suc y ) ) |
9 |
7 8
|
eqeq12d |
|- ( x = suc y -> ( ( card ` ( aleph ` x ) ) = ( aleph ` x ) <-> ( card ` ( aleph ` suc y ) ) = ( aleph ` suc y ) ) ) |
10 |
|
2fveq3 |
|- ( x = A -> ( card ` ( aleph ` x ) ) = ( card ` ( aleph ` A ) ) ) |
11 |
|
fveq2 |
|- ( x = A -> ( aleph ` x ) = ( aleph ` A ) ) |
12 |
10 11
|
eqeq12d |
|- ( x = A -> ( ( card ` ( aleph ` x ) ) = ( aleph ` x ) <-> ( card ` ( aleph ` A ) ) = ( aleph ` A ) ) ) |
13 |
|
cardom |
|- ( card ` _om ) = _om |
14 |
|
aleph0 |
|- ( aleph ` (/) ) = _om |
15 |
14
|
fveq2i |
|- ( card ` ( aleph ` (/) ) ) = ( card ` _om ) |
16 |
13 15 14
|
3eqtr4i |
|- ( card ` ( aleph ` (/) ) ) = ( aleph ` (/) ) |
17 |
|
harcard |
|- ( card ` ( har ` ( aleph ` y ) ) ) = ( har ` ( aleph ` y ) ) |
18 |
|
alephsuc |
|- ( y e. On -> ( aleph ` suc y ) = ( har ` ( aleph ` y ) ) ) |
19 |
18
|
fveq2d |
|- ( y e. On -> ( card ` ( aleph ` suc y ) ) = ( card ` ( har ` ( aleph ` y ) ) ) ) |
20 |
17 19 18
|
3eqtr4a |
|- ( y e. On -> ( card ` ( aleph ` suc y ) ) = ( aleph ` suc y ) ) |
21 |
20
|
a1d |
|- ( y e. On -> ( ( card ` ( aleph ` y ) ) = ( aleph ` y ) -> ( card ` ( aleph ` suc y ) ) = ( aleph ` suc y ) ) ) |
22 |
|
cardiun |
|- ( x e. _V -> ( A. y e. x ( card ` ( aleph ` y ) ) = ( aleph ` y ) -> ( card ` U_ y e. x ( aleph ` y ) ) = U_ y e. x ( aleph ` y ) ) ) |
23 |
22
|
elv |
|- ( A. y e. x ( card ` ( aleph ` y ) ) = ( aleph ` y ) -> ( card ` U_ y e. x ( aleph ` y ) ) = U_ y e. x ( aleph ` y ) ) |
24 |
23
|
adantl |
|- ( ( Lim x /\ A. y e. x ( card ` ( aleph ` y ) ) = ( aleph ` y ) ) -> ( card ` U_ y e. x ( aleph ` y ) ) = U_ y e. x ( aleph ` y ) ) |
25 |
|
vex |
|- x e. _V |
26 |
|
alephlim |
|- ( ( x e. _V /\ Lim x ) -> ( aleph ` x ) = U_ y e. x ( aleph ` y ) ) |
27 |
25 26
|
mpan |
|- ( Lim x -> ( aleph ` x ) = U_ y e. x ( aleph ` y ) ) |
28 |
27
|
adantr |
|- ( ( Lim x /\ A. y e. x ( card ` ( aleph ` y ) ) = ( aleph ` y ) ) -> ( aleph ` x ) = U_ y e. x ( aleph ` y ) ) |
29 |
28
|
fveq2d |
|- ( ( Lim x /\ A. y e. x ( card ` ( aleph ` y ) ) = ( aleph ` y ) ) -> ( card ` ( aleph ` x ) ) = ( card ` U_ y e. x ( aleph ` y ) ) ) |
30 |
24 29 28
|
3eqtr4d |
|- ( ( Lim x /\ A. y e. x ( card ` ( aleph ` y ) ) = ( aleph ` y ) ) -> ( card ` ( aleph ` x ) ) = ( aleph ` x ) ) |
31 |
30
|
ex |
|- ( Lim x -> ( A. y e. x ( card ` ( aleph ` y ) ) = ( aleph ` y ) -> ( card ` ( aleph ` x ) ) = ( aleph ` x ) ) ) |
32 |
3 6 9 12 16 21 31
|
tfinds |
|- ( A e. On -> ( card ` ( aleph ` A ) ) = ( aleph ` A ) ) |
33 |
|
card0 |
|- ( card ` (/) ) = (/) |
34 |
|
alephfnon |
|- aleph Fn On |
35 |
34
|
fndmi |
|- dom aleph = On |
36 |
35
|
eleq2i |
|- ( A e. dom aleph <-> A e. On ) |
37 |
|
ndmfv |
|- ( -. A e. dom aleph -> ( aleph ` A ) = (/) ) |
38 |
36 37
|
sylnbir |
|- ( -. A e. On -> ( aleph ` A ) = (/) ) |
39 |
38
|
fveq2d |
|- ( -. A e. On -> ( card ` ( aleph ` A ) ) = ( card ` (/) ) ) |
40 |
33 39 38
|
3eqtr4a |
|- ( -. A e. On -> ( card ` ( aleph ` A ) ) = ( aleph ` A ) ) |
41 |
32 40
|
pm2.61i |
|- ( card ` ( aleph ` A ) ) = ( aleph ` A ) |