| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2fveq3 |  |-  ( x = (/) -> ( card ` ( aleph ` x ) ) = ( card ` ( aleph ` (/) ) ) ) | 
						
							| 2 |  | fveq2 |  |-  ( x = (/) -> ( aleph ` x ) = ( aleph ` (/) ) ) | 
						
							| 3 | 1 2 | eqeq12d |  |-  ( x = (/) -> ( ( card ` ( aleph ` x ) ) = ( aleph ` x ) <-> ( card ` ( aleph ` (/) ) ) = ( aleph ` (/) ) ) ) | 
						
							| 4 |  | 2fveq3 |  |-  ( x = y -> ( card ` ( aleph ` x ) ) = ( card ` ( aleph ` y ) ) ) | 
						
							| 5 |  | fveq2 |  |-  ( x = y -> ( aleph ` x ) = ( aleph ` y ) ) | 
						
							| 6 | 4 5 | eqeq12d |  |-  ( x = y -> ( ( card ` ( aleph ` x ) ) = ( aleph ` x ) <-> ( card ` ( aleph ` y ) ) = ( aleph ` y ) ) ) | 
						
							| 7 |  | 2fveq3 |  |-  ( x = suc y -> ( card ` ( aleph ` x ) ) = ( card ` ( aleph ` suc y ) ) ) | 
						
							| 8 |  | fveq2 |  |-  ( x = suc y -> ( aleph ` x ) = ( aleph ` suc y ) ) | 
						
							| 9 | 7 8 | eqeq12d |  |-  ( x = suc y -> ( ( card ` ( aleph ` x ) ) = ( aleph ` x ) <-> ( card ` ( aleph ` suc y ) ) = ( aleph ` suc y ) ) ) | 
						
							| 10 |  | 2fveq3 |  |-  ( x = A -> ( card ` ( aleph ` x ) ) = ( card ` ( aleph ` A ) ) ) | 
						
							| 11 |  | fveq2 |  |-  ( x = A -> ( aleph ` x ) = ( aleph ` A ) ) | 
						
							| 12 | 10 11 | eqeq12d |  |-  ( x = A -> ( ( card ` ( aleph ` x ) ) = ( aleph ` x ) <-> ( card ` ( aleph ` A ) ) = ( aleph ` A ) ) ) | 
						
							| 13 |  | cardom |  |-  ( card ` _om ) = _om | 
						
							| 14 |  | aleph0 |  |-  ( aleph ` (/) ) = _om | 
						
							| 15 | 14 | fveq2i |  |-  ( card ` ( aleph ` (/) ) ) = ( card ` _om ) | 
						
							| 16 | 13 15 14 | 3eqtr4i |  |-  ( card ` ( aleph ` (/) ) ) = ( aleph ` (/) ) | 
						
							| 17 |  | harcard |  |-  ( card ` ( har ` ( aleph ` y ) ) ) = ( har ` ( aleph ` y ) ) | 
						
							| 18 |  | alephsuc |  |-  ( y e. On -> ( aleph ` suc y ) = ( har ` ( aleph ` y ) ) ) | 
						
							| 19 | 18 | fveq2d |  |-  ( y e. On -> ( card ` ( aleph ` suc y ) ) = ( card ` ( har ` ( aleph ` y ) ) ) ) | 
						
							| 20 | 17 19 18 | 3eqtr4a |  |-  ( y e. On -> ( card ` ( aleph ` suc y ) ) = ( aleph ` suc y ) ) | 
						
							| 21 | 20 | a1d |  |-  ( y e. On -> ( ( card ` ( aleph ` y ) ) = ( aleph ` y ) -> ( card ` ( aleph ` suc y ) ) = ( aleph ` suc y ) ) ) | 
						
							| 22 |  | cardiun |  |-  ( x e. _V -> ( A. y e. x ( card ` ( aleph ` y ) ) = ( aleph ` y ) -> ( card ` U_ y e. x ( aleph ` y ) ) = U_ y e. x ( aleph ` y ) ) ) | 
						
							| 23 | 22 | elv |  |-  ( A. y e. x ( card ` ( aleph ` y ) ) = ( aleph ` y ) -> ( card ` U_ y e. x ( aleph ` y ) ) = U_ y e. x ( aleph ` y ) ) | 
						
							| 24 | 23 | adantl |  |-  ( ( Lim x /\ A. y e. x ( card ` ( aleph ` y ) ) = ( aleph ` y ) ) -> ( card ` U_ y e. x ( aleph ` y ) ) = U_ y e. x ( aleph ` y ) ) | 
						
							| 25 |  | vex |  |-  x e. _V | 
						
							| 26 |  | alephlim |  |-  ( ( x e. _V /\ Lim x ) -> ( aleph ` x ) = U_ y e. x ( aleph ` y ) ) | 
						
							| 27 | 25 26 | mpan |  |-  ( Lim x -> ( aleph ` x ) = U_ y e. x ( aleph ` y ) ) | 
						
							| 28 | 27 | adantr |  |-  ( ( Lim x /\ A. y e. x ( card ` ( aleph ` y ) ) = ( aleph ` y ) ) -> ( aleph ` x ) = U_ y e. x ( aleph ` y ) ) | 
						
							| 29 | 28 | fveq2d |  |-  ( ( Lim x /\ A. y e. x ( card ` ( aleph ` y ) ) = ( aleph ` y ) ) -> ( card ` ( aleph ` x ) ) = ( card ` U_ y e. x ( aleph ` y ) ) ) | 
						
							| 30 | 24 29 28 | 3eqtr4d |  |-  ( ( Lim x /\ A. y e. x ( card ` ( aleph ` y ) ) = ( aleph ` y ) ) -> ( card ` ( aleph ` x ) ) = ( aleph ` x ) ) | 
						
							| 31 | 30 | ex |  |-  ( Lim x -> ( A. y e. x ( card ` ( aleph ` y ) ) = ( aleph ` y ) -> ( card ` ( aleph ` x ) ) = ( aleph ` x ) ) ) | 
						
							| 32 | 3 6 9 12 16 21 31 | tfinds |  |-  ( A e. On -> ( card ` ( aleph ` A ) ) = ( aleph ` A ) ) | 
						
							| 33 |  | card0 |  |-  ( card ` (/) ) = (/) | 
						
							| 34 |  | alephfnon |  |-  aleph Fn On | 
						
							| 35 | 34 | fndmi |  |-  dom aleph = On | 
						
							| 36 | 35 | eleq2i |  |-  ( A e. dom aleph <-> A e. On ) | 
						
							| 37 |  | ndmfv |  |-  ( -. A e. dom aleph -> ( aleph ` A ) = (/) ) | 
						
							| 38 | 36 37 | sylnbir |  |-  ( -. A e. On -> ( aleph ` A ) = (/) ) | 
						
							| 39 | 38 | fveq2d |  |-  ( -. A e. On -> ( card ` ( aleph ` A ) ) = ( card ` (/) ) ) | 
						
							| 40 | 33 39 38 | 3eqtr4a |  |-  ( -. A e. On -> ( card ` ( aleph ` A ) ) = ( aleph ` A ) ) | 
						
							| 41 | 32 40 | pm2.61i |  |-  ( card ` ( aleph ` A ) ) = ( aleph ` A ) |