| Step |
Hyp |
Ref |
Expression |
| 1 |
|
alephsdom |
|- ( ( B e. On /\ A e. On ) -> ( B e. ( aleph ` A ) <-> B ~< ( aleph ` A ) ) ) |
| 2 |
1
|
ancoms |
|- ( ( A e. On /\ B e. On ) -> ( B e. ( aleph ` A ) <-> B ~< ( aleph ` A ) ) ) |
| 3 |
2
|
notbid |
|- ( ( A e. On /\ B e. On ) -> ( -. B e. ( aleph ` A ) <-> -. B ~< ( aleph ` A ) ) ) |
| 4 |
|
alephon |
|- ( aleph ` A ) e. On |
| 5 |
4
|
onordi |
|- Ord ( aleph ` A ) |
| 6 |
|
eloni |
|- ( B e. On -> Ord B ) |
| 7 |
|
ordtri1 |
|- ( ( Ord ( aleph ` A ) /\ Ord B ) -> ( ( aleph ` A ) C_ B <-> -. B e. ( aleph ` A ) ) ) |
| 8 |
5 6 7
|
sylancr |
|- ( B e. On -> ( ( aleph ` A ) C_ B <-> -. B e. ( aleph ` A ) ) ) |
| 9 |
8
|
adantl |
|- ( ( A e. On /\ B e. On ) -> ( ( aleph ` A ) C_ B <-> -. B e. ( aleph ` A ) ) ) |
| 10 |
|
domtriord |
|- ( ( ( aleph ` A ) e. On /\ B e. On ) -> ( ( aleph ` A ) ~<_ B <-> -. B ~< ( aleph ` A ) ) ) |
| 11 |
4 10
|
mpan |
|- ( B e. On -> ( ( aleph ` A ) ~<_ B <-> -. B ~< ( aleph ` A ) ) ) |
| 12 |
11
|
adantl |
|- ( ( A e. On /\ B e. On ) -> ( ( aleph ` A ) ~<_ B <-> -. B ~< ( aleph ` A ) ) ) |
| 13 |
3 9 12
|
3bitr4d |
|- ( ( A e. On /\ B e. On ) -> ( ( aleph ` A ) C_ B <-> ( aleph ` A ) ~<_ B ) ) |