| Step |
Hyp |
Ref |
Expression |
| 1 |
|
alephon |
|- ( aleph ` B ) e. On |
| 2 |
|
onenon |
|- ( ( aleph ` B ) e. On -> ( aleph ` B ) e. dom card ) |
| 3 |
1 2
|
mp1i |
|- ( ( ( A e. On /\ B e. On ) /\ A C_ B ) -> ( aleph ` B ) e. dom card ) |
| 4 |
|
fvex |
|- ( aleph ` B ) e. _V |
| 5 |
|
simplr |
|- ( ( ( A e. On /\ B e. On ) /\ A C_ B ) -> B e. On ) |
| 6 |
|
alephgeom |
|- ( B e. On <-> _om C_ ( aleph ` B ) ) |
| 7 |
5 6
|
sylib |
|- ( ( ( A e. On /\ B e. On ) /\ A C_ B ) -> _om C_ ( aleph ` B ) ) |
| 8 |
|
ssdomg |
|- ( ( aleph ` B ) e. _V -> ( _om C_ ( aleph ` B ) -> _om ~<_ ( aleph ` B ) ) ) |
| 9 |
4 7 8
|
mpsyl |
|- ( ( ( A e. On /\ B e. On ) /\ A C_ B ) -> _om ~<_ ( aleph ` B ) ) |
| 10 |
|
fvex |
|- ( aleph ` A ) e. _V |
| 11 |
|
ordom |
|- Ord _om |
| 12 |
|
2onn |
|- 2o e. _om |
| 13 |
|
ordelss |
|- ( ( Ord _om /\ 2o e. _om ) -> 2o C_ _om ) |
| 14 |
11 12 13
|
mp2an |
|- 2o C_ _om |
| 15 |
|
simpll |
|- ( ( ( A e. On /\ B e. On ) /\ A C_ B ) -> A e. On ) |
| 16 |
|
alephgeom |
|- ( A e. On <-> _om C_ ( aleph ` A ) ) |
| 17 |
15 16
|
sylib |
|- ( ( ( A e. On /\ B e. On ) /\ A C_ B ) -> _om C_ ( aleph ` A ) ) |
| 18 |
14 17
|
sstrid |
|- ( ( ( A e. On /\ B e. On ) /\ A C_ B ) -> 2o C_ ( aleph ` A ) ) |
| 19 |
|
ssdomg |
|- ( ( aleph ` A ) e. _V -> ( 2o C_ ( aleph ` A ) -> 2o ~<_ ( aleph ` A ) ) ) |
| 20 |
10 18 19
|
mpsyl |
|- ( ( ( A e. On /\ B e. On ) /\ A C_ B ) -> 2o ~<_ ( aleph ` A ) ) |
| 21 |
|
alephord3 |
|- ( ( A e. On /\ B e. On ) -> ( A C_ B <-> ( aleph ` A ) C_ ( aleph ` B ) ) ) |
| 22 |
|
ssdomg |
|- ( ( aleph ` B ) e. _V -> ( ( aleph ` A ) C_ ( aleph ` B ) -> ( aleph ` A ) ~<_ ( aleph ` B ) ) ) |
| 23 |
4 22
|
ax-mp |
|- ( ( aleph ` A ) C_ ( aleph ` B ) -> ( aleph ` A ) ~<_ ( aleph ` B ) ) |
| 24 |
21 23
|
biimtrdi |
|- ( ( A e. On /\ B e. On ) -> ( A C_ B -> ( aleph ` A ) ~<_ ( aleph ` B ) ) ) |
| 25 |
24
|
imp |
|- ( ( ( A e. On /\ B e. On ) /\ A C_ B ) -> ( aleph ` A ) ~<_ ( aleph ` B ) ) |
| 26 |
4
|
canth2 |
|- ( aleph ` B ) ~< ~P ( aleph ` B ) |
| 27 |
|
sdomdom |
|- ( ( aleph ` B ) ~< ~P ( aleph ` B ) -> ( aleph ` B ) ~<_ ~P ( aleph ` B ) ) |
| 28 |
26 27
|
ax-mp |
|- ( aleph ` B ) ~<_ ~P ( aleph ` B ) |
| 29 |
|
domtr |
|- ( ( ( aleph ` A ) ~<_ ( aleph ` B ) /\ ( aleph ` B ) ~<_ ~P ( aleph ` B ) ) -> ( aleph ` A ) ~<_ ~P ( aleph ` B ) ) |
| 30 |
25 28 29
|
sylancl |
|- ( ( ( A e. On /\ B e. On ) /\ A C_ B ) -> ( aleph ` A ) ~<_ ~P ( aleph ` B ) ) |
| 31 |
|
mappwen |
|- ( ( ( ( aleph ` B ) e. dom card /\ _om ~<_ ( aleph ` B ) ) /\ ( 2o ~<_ ( aleph ` A ) /\ ( aleph ` A ) ~<_ ~P ( aleph ` B ) ) ) -> ( ( aleph ` A ) ^m ( aleph ` B ) ) ~~ ~P ( aleph ` B ) ) |
| 32 |
3 9 20 30 31
|
syl22anc |
|- ( ( ( A e. On /\ B e. On ) /\ A C_ B ) -> ( ( aleph ` A ) ^m ( aleph ` B ) ) ~~ ~P ( aleph ` B ) ) |
| 33 |
4
|
pw2en |
|- ~P ( aleph ` B ) ~~ ( 2o ^m ( aleph ` B ) ) |
| 34 |
|
enen2 |
|- ( ~P ( aleph ` B ) ~~ ( 2o ^m ( aleph ` B ) ) -> ( ( ( aleph ` A ) ^m ( aleph ` B ) ) ~~ ~P ( aleph ` B ) <-> ( ( aleph ` A ) ^m ( aleph ` B ) ) ~~ ( 2o ^m ( aleph ` B ) ) ) ) |
| 35 |
33 34
|
ax-mp |
|- ( ( ( aleph ` A ) ^m ( aleph ` B ) ) ~~ ~P ( aleph ` B ) <-> ( ( aleph ` A ) ^m ( aleph ` B ) ) ~~ ( 2o ^m ( aleph ` B ) ) ) |
| 36 |
32 35
|
sylib |
|- ( ( ( A e. On /\ B e. On ) /\ A C_ B ) -> ( ( aleph ` A ) ^m ( aleph ` B ) ) ~~ ( 2o ^m ( aleph ` B ) ) ) |