| Step |
Hyp |
Ref |
Expression |
| 1 |
|
alephgeom |
|- ( A e. On <-> _om C_ ( aleph ` A ) ) |
| 2 |
|
fvex |
|- ( aleph ` A ) e. _V |
| 3 |
|
ssdomg |
|- ( ( aleph ` A ) e. _V -> ( _om C_ ( aleph ` A ) -> _om ~<_ ( aleph ` A ) ) ) |
| 4 |
2 3
|
ax-mp |
|- ( _om C_ ( aleph ` A ) -> _om ~<_ ( aleph ` A ) ) |
| 5 |
1 4
|
sylbi |
|- ( A e. On -> _om ~<_ ( aleph ` A ) ) |
| 6 |
|
domrefg |
|- ( ( aleph ` A ) e. _V -> ( aleph ` A ) ~<_ ( aleph ` A ) ) |
| 7 |
2 6
|
ax-mp |
|- ( aleph ` A ) ~<_ ( aleph ` A ) |
| 8 |
|
infmap |
|- ( ( _om ~<_ ( aleph ` A ) /\ ( aleph ` A ) ~<_ ( aleph ` A ) ) -> ( ( aleph ` A ) ^m ( aleph ` A ) ) ~~ { x | ( x C_ ( aleph ` A ) /\ x ~~ ( aleph ` A ) ) } ) |
| 9 |
5 7 8
|
sylancl |
|- ( A e. On -> ( ( aleph ` A ) ^m ( aleph ` A ) ) ~~ { x | ( x C_ ( aleph ` A ) /\ x ~~ ( aleph ` A ) ) } ) |
| 10 |
|
pm3.2 |
|- ( A e. On -> ( A e. On -> ( A e. On /\ A e. On ) ) ) |
| 11 |
10
|
pm2.43i |
|- ( A e. On -> ( A e. On /\ A e. On ) ) |
| 12 |
|
ssid |
|- A C_ A |
| 13 |
|
alephexp1 |
|- ( ( ( A e. On /\ A e. On ) /\ A C_ A ) -> ( ( aleph ` A ) ^m ( aleph ` A ) ) ~~ ( 2o ^m ( aleph ` A ) ) ) |
| 14 |
11 12 13
|
sylancl |
|- ( A e. On -> ( ( aleph ` A ) ^m ( aleph ` A ) ) ~~ ( 2o ^m ( aleph ` A ) ) ) |
| 15 |
|
enen1 |
|- ( ( ( aleph ` A ) ^m ( aleph ` A ) ) ~~ ( 2o ^m ( aleph ` A ) ) -> ( ( ( aleph ` A ) ^m ( aleph ` A ) ) ~~ { x | ( x C_ ( aleph ` A ) /\ x ~~ ( aleph ` A ) ) } <-> ( 2o ^m ( aleph ` A ) ) ~~ { x | ( x C_ ( aleph ` A ) /\ x ~~ ( aleph ` A ) ) } ) ) |
| 16 |
14 15
|
syl |
|- ( A e. On -> ( ( ( aleph ` A ) ^m ( aleph ` A ) ) ~~ { x | ( x C_ ( aleph ` A ) /\ x ~~ ( aleph ` A ) ) } <-> ( 2o ^m ( aleph ` A ) ) ~~ { x | ( x C_ ( aleph ` A ) /\ x ~~ ( aleph ` A ) ) } ) ) |
| 17 |
9 16
|
mpbid |
|- ( A e. On -> ( 2o ^m ( aleph ` A ) ) ~~ { x | ( x C_ ( aleph ` A ) /\ x ~~ ( aleph ` A ) ) } ) |