Step |
Hyp |
Ref |
Expression |
1 |
|
alephfnon |
|- aleph Fn On |
2 |
|
alephon |
|- ( aleph ` x ) e. On |
3 |
2
|
rgenw |
|- A. x e. On ( aleph ` x ) e. On |
4 |
|
ffnfv |
|- ( aleph : On --> On <-> ( aleph Fn On /\ A. x e. On ( aleph ` x ) e. On ) ) |
5 |
1 3 4
|
mpbir2an |
|- aleph : On --> On |
6 |
|
aleph11 |
|- ( ( x e. On /\ y e. On ) -> ( ( aleph ` x ) = ( aleph ` y ) <-> x = y ) ) |
7 |
6
|
biimpd |
|- ( ( x e. On /\ y e. On ) -> ( ( aleph ` x ) = ( aleph ` y ) -> x = y ) ) |
8 |
7
|
rgen2 |
|- A. x e. On A. y e. On ( ( aleph ` x ) = ( aleph ` y ) -> x = y ) |
9 |
|
dff13 |
|- ( aleph : On -1-1-> On <-> ( aleph : On --> On /\ A. x e. On A. y e. On ( ( aleph ` x ) = ( aleph ` y ) -> x = y ) ) ) |
10 |
5 8 9
|
mpbir2an |
|- aleph : On -1-1-> On |