| Step |
Hyp |
Ref |
Expression |
| 1 |
|
alephfplem.1 |
|- H = ( rec ( aleph , _om ) |` _om ) |
| 2 |
|
fveq2 |
|- ( v = (/) -> ( H ` v ) = ( H ` (/) ) ) |
| 3 |
2
|
eleq1d |
|- ( v = (/) -> ( ( H ` v ) e. ran aleph <-> ( H ` (/) ) e. ran aleph ) ) |
| 4 |
|
fveq2 |
|- ( v = w -> ( H ` v ) = ( H ` w ) ) |
| 5 |
4
|
eleq1d |
|- ( v = w -> ( ( H ` v ) e. ran aleph <-> ( H ` w ) e. ran aleph ) ) |
| 6 |
|
fveq2 |
|- ( v = suc w -> ( H ` v ) = ( H ` suc w ) ) |
| 7 |
6
|
eleq1d |
|- ( v = suc w -> ( ( H ` v ) e. ran aleph <-> ( H ` suc w ) e. ran aleph ) ) |
| 8 |
1
|
alephfplem1 |
|- ( H ` (/) ) e. ran aleph |
| 9 |
|
alephfnon |
|- aleph Fn On |
| 10 |
|
alephsson |
|- ran aleph C_ On |
| 11 |
10
|
sseli |
|- ( ( H ` w ) e. ran aleph -> ( H ` w ) e. On ) |
| 12 |
|
fnfvelrn |
|- ( ( aleph Fn On /\ ( H ` w ) e. On ) -> ( aleph ` ( H ` w ) ) e. ran aleph ) |
| 13 |
9 11 12
|
sylancr |
|- ( ( H ` w ) e. ran aleph -> ( aleph ` ( H ` w ) ) e. ran aleph ) |
| 14 |
1
|
alephfplem2 |
|- ( w e. _om -> ( H ` suc w ) = ( aleph ` ( H ` w ) ) ) |
| 15 |
14
|
eleq1d |
|- ( w e. _om -> ( ( H ` suc w ) e. ran aleph <-> ( aleph ` ( H ` w ) ) e. ran aleph ) ) |
| 16 |
13 15
|
imbitrrid |
|- ( w e. _om -> ( ( H ` w ) e. ran aleph -> ( H ` suc w ) e. ran aleph ) ) |
| 17 |
3 5 7 8 16
|
finds1 |
|- ( v e. _om -> ( H ` v ) e. ran aleph ) |