Step |
Hyp |
Ref |
Expression |
1 |
|
alephnbtwn2 |
|- -. ( ( aleph ` A ) ~< x /\ x ~< ( aleph ` suc A ) ) |
2 |
|
sdomen2 |
|- ( ( aleph ` suc A ) ~~ ~P ( aleph ` A ) -> ( x ~< ( aleph ` suc A ) <-> x ~< ~P ( aleph ` A ) ) ) |
3 |
2
|
anbi2d |
|- ( ( aleph ` suc A ) ~~ ~P ( aleph ` A ) -> ( ( ( aleph ` A ) ~< x /\ x ~< ( aleph ` suc A ) ) <-> ( ( aleph ` A ) ~< x /\ x ~< ~P ( aleph ` A ) ) ) ) |
4 |
1 3
|
mtbii |
|- ( ( aleph ` suc A ) ~~ ~P ( aleph ` A ) -> -. ( ( aleph ` A ) ~< x /\ x ~< ~P ( aleph ` A ) ) ) |
5 |
4
|
alrimiv |
|- ( ( aleph ` suc A ) ~~ ~P ( aleph ` A ) -> A. x -. ( ( aleph ` A ) ~< x /\ x ~< ~P ( aleph ` A ) ) ) |
6 |
5
|
olcd |
|- ( ( aleph ` suc A ) ~~ ~P ( aleph ` A ) -> ( ( aleph ` A ) e. Fin \/ A. x -. ( ( aleph ` A ) ~< x /\ x ~< ~P ( aleph ` A ) ) ) ) |
7 |
|
fvex |
|- ( aleph ` A ) e. _V |
8 |
|
elgch |
|- ( ( aleph ` A ) e. _V -> ( ( aleph ` A ) e. GCH <-> ( ( aleph ` A ) e. Fin \/ A. x -. ( ( aleph ` A ) ~< x /\ x ~< ~P ( aleph ` A ) ) ) ) ) |
9 |
7 8
|
ax-mp |
|- ( ( aleph ` A ) e. GCH <-> ( ( aleph ` A ) e. Fin \/ A. x -. ( ( aleph ` A ) ~< x /\ x ~< ~P ( aleph ` A ) ) ) ) |
10 |
6 9
|
sylibr |
|- ( ( aleph ` suc A ) ~~ ~P ( aleph ` A ) -> ( aleph ` A ) e. GCH ) |