| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aleph0 |  |-  ( aleph ` (/) ) = _om | 
						
							| 2 |  | 0ss |  |-  (/) C_ A | 
						
							| 3 |  | 0elon |  |-  (/) e. On | 
						
							| 4 |  | alephord3 |  |-  ( ( (/) e. On /\ A e. On ) -> ( (/) C_ A <-> ( aleph ` (/) ) C_ ( aleph ` A ) ) ) | 
						
							| 5 | 3 4 | mpan |  |-  ( A e. On -> ( (/) C_ A <-> ( aleph ` (/) ) C_ ( aleph ` A ) ) ) | 
						
							| 6 | 2 5 | mpbii |  |-  ( A e. On -> ( aleph ` (/) ) C_ ( aleph ` A ) ) | 
						
							| 7 | 1 6 | eqsstrrid |  |-  ( A e. On -> _om C_ ( aleph ` A ) ) | 
						
							| 8 |  | peano1 |  |-  (/) e. _om | 
						
							| 9 |  | ordom |  |-  Ord _om | 
						
							| 10 |  | ord0 |  |-  Ord (/) | 
						
							| 11 |  | ordtri1 |  |-  ( ( Ord _om /\ Ord (/) ) -> ( _om C_ (/) <-> -. (/) e. _om ) ) | 
						
							| 12 | 9 10 11 | mp2an |  |-  ( _om C_ (/) <-> -. (/) e. _om ) | 
						
							| 13 | 12 | con2bii |  |-  ( (/) e. _om <-> -. _om C_ (/) ) | 
						
							| 14 | 8 13 | mpbi |  |-  -. _om C_ (/) | 
						
							| 15 |  | ndmfv |  |-  ( -. A e. dom aleph -> ( aleph ` A ) = (/) ) | 
						
							| 16 | 15 | sseq2d |  |-  ( -. A e. dom aleph -> ( _om C_ ( aleph ` A ) <-> _om C_ (/) ) ) | 
						
							| 17 | 14 16 | mtbiri |  |-  ( -. A e. dom aleph -> -. _om C_ ( aleph ` A ) ) | 
						
							| 18 | 17 | con4i |  |-  ( _om C_ ( aleph ` A ) -> A e. dom aleph ) | 
						
							| 19 |  | alephfnon |  |-  aleph Fn On | 
						
							| 20 | 19 | fndmi |  |-  dom aleph = On | 
						
							| 21 | 18 20 | eleqtrdi |  |-  ( _om C_ ( aleph ` A ) -> A e. On ) | 
						
							| 22 | 7 21 | impbii |  |-  ( A e. On <-> _om C_ ( aleph ` A ) ) |