| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							isinfcard | 
							 |-  ( ( _om C_ A /\ ( card ` A ) = A ) <-> A e. ran aleph )  | 
						
						
							| 2 | 
							
								1
							 | 
							bicomi | 
							 |-  ( A e. ran aleph <-> ( _om C_ A /\ ( card ` A ) = A ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							baib | 
							 |-  ( _om C_ A -> ( A e. ran aleph <-> ( card ` A ) = A ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							adantl | 
							 |-  ( ( A e. On /\ _om C_ A ) -> ( A e. ran aleph <-> ( card ` A ) = A ) )  | 
						
						
							| 5 | 
							
								
							 | 
							onenon | 
							 |-  ( A e. On -> A e. dom card )  | 
						
						
							| 6 | 
							
								5
							 | 
							adantr | 
							 |-  ( ( A e. On /\ _om C_ A ) -> A e. dom card )  | 
						
						
							| 7 | 
							
								
							 | 
							onenon | 
							 |-  ( x e. On -> x e. dom card )  | 
						
						
							| 8 | 
							
								
							 | 
							carddom2 | 
							 |-  ( ( A e. dom card /\ x e. dom card ) -> ( ( card ` A ) C_ ( card ` x ) <-> A ~<_ x ) )  | 
						
						
							| 9 | 
							
								6 7 8
							 | 
							syl2an | 
							 |-  ( ( ( A e. On /\ _om C_ A ) /\ x e. On ) -> ( ( card ` A ) C_ ( card ` x ) <-> A ~<_ x ) )  | 
						
						
							| 10 | 
							
								
							 | 
							cardonle | 
							 |-  ( x e. On -> ( card ` x ) C_ x )  | 
						
						
							| 11 | 
							
								10
							 | 
							adantl | 
							 |-  ( ( ( A e. On /\ _om C_ A ) /\ x e. On ) -> ( card ` x ) C_ x )  | 
						
						
							| 12 | 
							
								
							 | 
							sstr | 
							 |-  ( ( ( card ` A ) C_ ( card ` x ) /\ ( card ` x ) C_ x ) -> ( card ` A ) C_ x )  | 
						
						
							| 13 | 
							
								12
							 | 
							expcom | 
							 |-  ( ( card ` x ) C_ x -> ( ( card ` A ) C_ ( card ` x ) -> ( card ` A ) C_ x ) )  | 
						
						
							| 14 | 
							
								11 13
							 | 
							syl | 
							 |-  ( ( ( A e. On /\ _om C_ A ) /\ x e. On ) -> ( ( card ` A ) C_ ( card ` x ) -> ( card ` A ) C_ x ) )  | 
						
						
							| 15 | 
							
								9 14
							 | 
							sylbird | 
							 |-  ( ( ( A e. On /\ _om C_ A ) /\ x e. On ) -> ( A ~<_ x -> ( card ` A ) C_ x ) )  | 
						
						
							| 16 | 
							
								
							 | 
							sseq1 | 
							 |-  ( ( card ` A ) = A -> ( ( card ` A ) C_ x <-> A C_ x ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							imbi2d | 
							 |-  ( ( card ` A ) = A -> ( ( A ~<_ x -> ( card ` A ) C_ x ) <-> ( A ~<_ x -> A C_ x ) ) )  | 
						
						
							| 18 | 
							
								15 17
							 | 
							syl5ibcom | 
							 |-  ( ( ( A e. On /\ _om C_ A ) /\ x e. On ) -> ( ( card ` A ) = A -> ( A ~<_ x -> A C_ x ) ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							ralrimdva | 
							 |-  ( ( A e. On /\ _om C_ A ) -> ( ( card ` A ) = A -> A. x e. On ( A ~<_ x -> A C_ x ) ) )  | 
						
						
							| 20 | 
							
								
							 | 
							oncardid | 
							 |-  ( A e. On -> ( card ` A ) ~~ A )  | 
						
						
							| 21 | 
							
								
							 | 
							ensym | 
							 |-  ( ( card ` A ) ~~ A -> A ~~ ( card ` A ) )  | 
						
						
							| 22 | 
							
								
							 | 
							endom | 
							 |-  ( A ~~ ( card ` A ) -> A ~<_ ( card ` A ) )  | 
						
						
							| 23 | 
							
								20 21 22
							 | 
							3syl | 
							 |-  ( A e. On -> A ~<_ ( card ` A ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							adantr | 
							 |-  ( ( A e. On /\ _om C_ A ) -> A ~<_ ( card ` A ) )  | 
						
						
							| 25 | 
							
								
							 | 
							cardon | 
							 |-  ( card ` A ) e. On  | 
						
						
							| 26 | 
							
								
							 | 
							breq2 | 
							 |-  ( x = ( card ` A ) -> ( A ~<_ x <-> A ~<_ ( card ` A ) ) )  | 
						
						
							| 27 | 
							
								
							 | 
							sseq2 | 
							 |-  ( x = ( card ` A ) -> ( A C_ x <-> A C_ ( card ` A ) ) )  | 
						
						
							| 28 | 
							
								26 27
							 | 
							imbi12d | 
							 |-  ( x = ( card ` A ) -> ( ( A ~<_ x -> A C_ x ) <-> ( A ~<_ ( card ` A ) -> A C_ ( card ` A ) ) ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							rspcv | 
							 |-  ( ( card ` A ) e. On -> ( A. x e. On ( A ~<_ x -> A C_ x ) -> ( A ~<_ ( card ` A ) -> A C_ ( card ` A ) ) ) )  | 
						
						
							| 30 | 
							
								25 29
							 | 
							ax-mp | 
							 |-  ( A. x e. On ( A ~<_ x -> A C_ x ) -> ( A ~<_ ( card ` A ) -> A C_ ( card ` A ) ) )  | 
						
						
							| 31 | 
							
								24 30
							 | 
							syl5com | 
							 |-  ( ( A e. On /\ _om C_ A ) -> ( A. x e. On ( A ~<_ x -> A C_ x ) -> A C_ ( card ` A ) ) )  | 
						
						
							| 32 | 
							
								
							 | 
							cardonle | 
							 |-  ( A e. On -> ( card ` A ) C_ A )  | 
						
						
							| 33 | 
							
								32
							 | 
							adantr | 
							 |-  ( ( A e. On /\ _om C_ A ) -> ( card ` A ) C_ A )  | 
						
						
							| 34 | 
							
								33
							 | 
							biantrurd | 
							 |-  ( ( A e. On /\ _om C_ A ) -> ( A C_ ( card ` A ) <-> ( ( card ` A ) C_ A /\ A C_ ( card ` A ) ) ) )  | 
						
						
							| 35 | 
							
								
							 | 
							eqss | 
							 |-  ( ( card ` A ) = A <-> ( ( card ` A ) C_ A /\ A C_ ( card ` A ) ) )  | 
						
						
							| 36 | 
							
								34 35
							 | 
							bitr4di | 
							 |-  ( ( A e. On /\ _om C_ A ) -> ( A C_ ( card ` A ) <-> ( card ` A ) = A ) )  | 
						
						
							| 37 | 
							
								31 36
							 | 
							sylibd | 
							 |-  ( ( A e. On /\ _om C_ A ) -> ( A. x e. On ( A ~<_ x -> A C_ x ) -> ( card ` A ) = A ) )  | 
						
						
							| 38 | 
							
								19 37
							 | 
							impbid | 
							 |-  ( ( A e. On /\ _om C_ A ) -> ( ( card ` A ) = A <-> A. x e. On ( A ~<_ x -> A C_ x ) ) )  | 
						
						
							| 39 | 
							
								4 38
							 | 
							bitrd | 
							 |-  ( ( A e. On /\ _om C_ A ) -> ( A e. ran aleph <-> A. x e. On ( A ~<_ x -> A C_ x ) ) )  |