Step |
Hyp |
Ref |
Expression |
1 |
|
isinfcard |
|- ( ( _om C_ A /\ ( card ` A ) = A ) <-> A e. ran aleph ) |
2 |
1
|
bicomi |
|- ( A e. ran aleph <-> ( _om C_ A /\ ( card ` A ) = A ) ) |
3 |
2
|
baib |
|- ( _om C_ A -> ( A e. ran aleph <-> ( card ` A ) = A ) ) |
4 |
3
|
adantl |
|- ( ( A e. On /\ _om C_ A ) -> ( A e. ran aleph <-> ( card ` A ) = A ) ) |
5 |
|
onenon |
|- ( A e. On -> A e. dom card ) |
6 |
5
|
adantr |
|- ( ( A e. On /\ _om C_ A ) -> A e. dom card ) |
7 |
|
onenon |
|- ( x e. On -> x e. dom card ) |
8 |
|
carddom2 |
|- ( ( A e. dom card /\ x e. dom card ) -> ( ( card ` A ) C_ ( card ` x ) <-> A ~<_ x ) ) |
9 |
6 7 8
|
syl2an |
|- ( ( ( A e. On /\ _om C_ A ) /\ x e. On ) -> ( ( card ` A ) C_ ( card ` x ) <-> A ~<_ x ) ) |
10 |
|
cardonle |
|- ( x e. On -> ( card ` x ) C_ x ) |
11 |
10
|
adantl |
|- ( ( ( A e. On /\ _om C_ A ) /\ x e. On ) -> ( card ` x ) C_ x ) |
12 |
|
sstr |
|- ( ( ( card ` A ) C_ ( card ` x ) /\ ( card ` x ) C_ x ) -> ( card ` A ) C_ x ) |
13 |
12
|
expcom |
|- ( ( card ` x ) C_ x -> ( ( card ` A ) C_ ( card ` x ) -> ( card ` A ) C_ x ) ) |
14 |
11 13
|
syl |
|- ( ( ( A e. On /\ _om C_ A ) /\ x e. On ) -> ( ( card ` A ) C_ ( card ` x ) -> ( card ` A ) C_ x ) ) |
15 |
9 14
|
sylbird |
|- ( ( ( A e. On /\ _om C_ A ) /\ x e. On ) -> ( A ~<_ x -> ( card ` A ) C_ x ) ) |
16 |
|
sseq1 |
|- ( ( card ` A ) = A -> ( ( card ` A ) C_ x <-> A C_ x ) ) |
17 |
16
|
imbi2d |
|- ( ( card ` A ) = A -> ( ( A ~<_ x -> ( card ` A ) C_ x ) <-> ( A ~<_ x -> A C_ x ) ) ) |
18 |
15 17
|
syl5ibcom |
|- ( ( ( A e. On /\ _om C_ A ) /\ x e. On ) -> ( ( card ` A ) = A -> ( A ~<_ x -> A C_ x ) ) ) |
19 |
18
|
ralrimdva |
|- ( ( A e. On /\ _om C_ A ) -> ( ( card ` A ) = A -> A. x e. On ( A ~<_ x -> A C_ x ) ) ) |
20 |
|
oncardid |
|- ( A e. On -> ( card ` A ) ~~ A ) |
21 |
|
ensym |
|- ( ( card ` A ) ~~ A -> A ~~ ( card ` A ) ) |
22 |
|
endom |
|- ( A ~~ ( card ` A ) -> A ~<_ ( card ` A ) ) |
23 |
20 21 22
|
3syl |
|- ( A e. On -> A ~<_ ( card ` A ) ) |
24 |
23
|
adantr |
|- ( ( A e. On /\ _om C_ A ) -> A ~<_ ( card ` A ) ) |
25 |
|
cardon |
|- ( card ` A ) e. On |
26 |
|
breq2 |
|- ( x = ( card ` A ) -> ( A ~<_ x <-> A ~<_ ( card ` A ) ) ) |
27 |
|
sseq2 |
|- ( x = ( card ` A ) -> ( A C_ x <-> A C_ ( card ` A ) ) ) |
28 |
26 27
|
imbi12d |
|- ( x = ( card ` A ) -> ( ( A ~<_ x -> A C_ x ) <-> ( A ~<_ ( card ` A ) -> A C_ ( card ` A ) ) ) ) |
29 |
28
|
rspcv |
|- ( ( card ` A ) e. On -> ( A. x e. On ( A ~<_ x -> A C_ x ) -> ( A ~<_ ( card ` A ) -> A C_ ( card ` A ) ) ) ) |
30 |
25 29
|
ax-mp |
|- ( A. x e. On ( A ~<_ x -> A C_ x ) -> ( A ~<_ ( card ` A ) -> A C_ ( card ` A ) ) ) |
31 |
24 30
|
syl5com |
|- ( ( A e. On /\ _om C_ A ) -> ( A. x e. On ( A ~<_ x -> A C_ x ) -> A C_ ( card ` A ) ) ) |
32 |
|
cardonle |
|- ( A e. On -> ( card ` A ) C_ A ) |
33 |
32
|
adantr |
|- ( ( A e. On /\ _om C_ A ) -> ( card ` A ) C_ A ) |
34 |
33
|
biantrurd |
|- ( ( A e. On /\ _om C_ A ) -> ( A C_ ( card ` A ) <-> ( ( card ` A ) C_ A /\ A C_ ( card ` A ) ) ) ) |
35 |
|
eqss |
|- ( ( card ` A ) = A <-> ( ( card ` A ) C_ A /\ A C_ ( card ` A ) ) ) |
36 |
34 35
|
bitr4di |
|- ( ( A e. On /\ _om C_ A ) -> ( A C_ ( card ` A ) <-> ( card ` A ) = A ) ) |
37 |
31 36
|
sylibd |
|- ( ( A e. On /\ _om C_ A ) -> ( A. x e. On ( A ~<_ x -> A C_ x ) -> ( card ` A ) = A ) ) |
38 |
19 37
|
impbid |
|- ( ( A e. On /\ _om C_ A ) -> ( ( card ` A ) = A <-> A. x e. On ( A ~<_ x -> A C_ x ) ) ) |
39 |
4 38
|
bitrd |
|- ( ( A e. On /\ _om C_ A ) -> ( A e. ran aleph <-> A. x e. On ( A ~<_ x -> A C_ x ) ) ) |