| Step | Hyp | Ref | Expression | 
						
							| 1 |  | alephgeom |  |-  ( A e. On <-> _om C_ ( aleph ` A ) ) | 
						
							| 2 |  | cardlim |  |-  ( _om C_ ( card ` ( aleph ` A ) ) <-> Lim ( card ` ( aleph ` A ) ) ) | 
						
							| 3 |  | alephcard |  |-  ( card ` ( aleph ` A ) ) = ( aleph ` A ) | 
						
							| 4 | 3 | sseq2i |  |-  ( _om C_ ( card ` ( aleph ` A ) ) <-> _om C_ ( aleph ` A ) ) | 
						
							| 5 |  | limeq |  |-  ( ( card ` ( aleph ` A ) ) = ( aleph ` A ) -> ( Lim ( card ` ( aleph ` A ) ) <-> Lim ( aleph ` A ) ) ) | 
						
							| 6 | 3 5 | ax-mp |  |-  ( Lim ( card ` ( aleph ` A ) ) <-> Lim ( aleph ` A ) ) | 
						
							| 7 | 2 4 6 | 3bitr3i |  |-  ( _om C_ ( aleph ` A ) <-> Lim ( aleph ` A ) ) | 
						
							| 8 | 1 7 | bitri |  |-  ( A e. On <-> Lim ( aleph ` A ) ) |