| Step |
Hyp |
Ref |
Expression |
| 1 |
|
alephfnon |
|- aleph Fn On |
| 2 |
|
isinfcard |
|- ( ( _om C_ x /\ ( card ` x ) = x ) <-> x e. ran aleph ) |
| 3 |
2
|
bicomi |
|- ( x e. ran aleph <-> ( _om C_ x /\ ( card ` x ) = x ) ) |
| 4 |
3
|
eqabi |
|- ran aleph = { x | ( _om C_ x /\ ( card ` x ) = x ) } |
| 5 |
|
df-fo |
|- ( aleph : On -onto-> { x | ( _om C_ x /\ ( card ` x ) = x ) } <-> ( aleph Fn On /\ ran aleph = { x | ( _om C_ x /\ ( card ` x ) = x ) } ) ) |
| 6 |
1 4 5
|
mpbir2an |
|- aleph : On -onto-> { x | ( _om C_ x /\ ( card ` x ) = x ) } |
| 7 |
|
fof |
|- ( aleph : On -onto-> { x | ( _om C_ x /\ ( card ` x ) = x ) } -> aleph : On --> { x | ( _om C_ x /\ ( card ` x ) = x ) } ) |
| 8 |
6 7
|
ax-mp |
|- aleph : On --> { x | ( _om C_ x /\ ( card ` x ) = x ) } |
| 9 |
|
aleph11 |
|- ( ( y e. On /\ z e. On ) -> ( ( aleph ` y ) = ( aleph ` z ) <-> y = z ) ) |
| 10 |
9
|
biimpd |
|- ( ( y e. On /\ z e. On ) -> ( ( aleph ` y ) = ( aleph ` z ) -> y = z ) ) |
| 11 |
10
|
rgen2 |
|- A. y e. On A. z e. On ( ( aleph ` y ) = ( aleph ` z ) -> y = z ) |
| 12 |
|
dff13 |
|- ( aleph : On -1-1-> { x | ( _om C_ x /\ ( card ` x ) = x ) } <-> ( aleph : On --> { x | ( _om C_ x /\ ( card ` x ) = x ) } /\ A. y e. On A. z e. On ( ( aleph ` y ) = ( aleph ` z ) -> y = z ) ) ) |
| 13 |
8 11 12
|
mpbir2an |
|- aleph : On -1-1-> { x | ( _om C_ x /\ ( card ` x ) = x ) } |
| 14 |
|
df-f1o |
|- ( aleph : On -1-1-onto-> { x | ( _om C_ x /\ ( card ` x ) = x ) } <-> ( aleph : On -1-1-> { x | ( _om C_ x /\ ( card ` x ) = x ) } /\ aleph : On -onto-> { x | ( _om C_ x /\ ( card ` x ) = x ) } ) ) |
| 15 |
13 6 14
|
mpbir2an |
|- aleph : On -1-1-onto-> { x | ( _om C_ x /\ ( card ` x ) = x ) } |
| 16 |
|
alephord2 |
|- ( ( y e. On /\ z e. On ) -> ( y e. z <-> ( aleph ` y ) e. ( aleph ` z ) ) ) |
| 17 |
|
epel |
|- ( y _E z <-> y e. z ) |
| 18 |
|
fvex |
|- ( aleph ` z ) e. _V |
| 19 |
18
|
epeli |
|- ( ( aleph ` y ) _E ( aleph ` z ) <-> ( aleph ` y ) e. ( aleph ` z ) ) |
| 20 |
16 17 19
|
3bitr4g |
|- ( ( y e. On /\ z e. On ) -> ( y _E z <-> ( aleph ` y ) _E ( aleph ` z ) ) ) |
| 21 |
20
|
rgen2 |
|- A. y e. On A. z e. On ( y _E z <-> ( aleph ` y ) _E ( aleph ` z ) ) |
| 22 |
|
df-isom |
|- ( aleph Isom _E , _E ( On , { x | ( _om C_ x /\ ( card ` x ) = x ) } ) <-> ( aleph : On -1-1-onto-> { x | ( _om C_ x /\ ( card ` x ) = x ) } /\ A. y e. On A. z e. On ( y _E z <-> ( aleph ` y ) _E ( aleph ` z ) ) ) ) |
| 23 |
15 21 22
|
mpbir2an |
|- aleph Isom _E , _E ( On , { x | ( _om C_ x /\ ( card ` x ) = x ) } ) |