| Step |
Hyp |
Ref |
Expression |
| 1 |
|
id |
|- ( x = y -> x = y ) |
| 2 |
|
fveq2 |
|- ( x = y -> ( aleph ` x ) = ( aleph ` y ) ) |
| 3 |
1 2
|
sseq12d |
|- ( x = y -> ( x C_ ( aleph ` x ) <-> y C_ ( aleph ` y ) ) ) |
| 4 |
|
id |
|- ( x = A -> x = A ) |
| 5 |
|
fveq2 |
|- ( x = A -> ( aleph ` x ) = ( aleph ` A ) ) |
| 6 |
4 5
|
sseq12d |
|- ( x = A -> ( x C_ ( aleph ` x ) <-> A C_ ( aleph ` A ) ) ) |
| 7 |
|
alephord2i |
|- ( x e. On -> ( y e. x -> ( aleph ` y ) e. ( aleph ` x ) ) ) |
| 8 |
7
|
imp |
|- ( ( x e. On /\ y e. x ) -> ( aleph ` y ) e. ( aleph ` x ) ) |
| 9 |
|
onelon |
|- ( ( x e. On /\ y e. x ) -> y e. On ) |
| 10 |
|
alephon |
|- ( aleph ` x ) e. On |
| 11 |
|
ontr2 |
|- ( ( y e. On /\ ( aleph ` x ) e. On ) -> ( ( y C_ ( aleph ` y ) /\ ( aleph ` y ) e. ( aleph ` x ) ) -> y e. ( aleph ` x ) ) ) |
| 12 |
9 10 11
|
sylancl |
|- ( ( x e. On /\ y e. x ) -> ( ( y C_ ( aleph ` y ) /\ ( aleph ` y ) e. ( aleph ` x ) ) -> y e. ( aleph ` x ) ) ) |
| 13 |
8 12
|
mpan2d |
|- ( ( x e. On /\ y e. x ) -> ( y C_ ( aleph ` y ) -> y e. ( aleph ` x ) ) ) |
| 14 |
13
|
ralimdva |
|- ( x e. On -> ( A. y e. x y C_ ( aleph ` y ) -> A. y e. x y e. ( aleph ` x ) ) ) |
| 15 |
10
|
onirri |
|- -. ( aleph ` x ) e. ( aleph ` x ) |
| 16 |
|
eleq1 |
|- ( y = ( aleph ` x ) -> ( y e. ( aleph ` x ) <-> ( aleph ` x ) e. ( aleph ` x ) ) ) |
| 17 |
16
|
rspccv |
|- ( A. y e. x y e. ( aleph ` x ) -> ( ( aleph ` x ) e. x -> ( aleph ` x ) e. ( aleph ` x ) ) ) |
| 18 |
15 17
|
mtoi |
|- ( A. y e. x y e. ( aleph ` x ) -> -. ( aleph ` x ) e. x ) |
| 19 |
|
ontri1 |
|- ( ( x e. On /\ ( aleph ` x ) e. On ) -> ( x C_ ( aleph ` x ) <-> -. ( aleph ` x ) e. x ) ) |
| 20 |
10 19
|
mpan2 |
|- ( x e. On -> ( x C_ ( aleph ` x ) <-> -. ( aleph ` x ) e. x ) ) |
| 21 |
18 20
|
imbitrrid |
|- ( x e. On -> ( A. y e. x y e. ( aleph ` x ) -> x C_ ( aleph ` x ) ) ) |
| 22 |
14 21
|
syld |
|- ( x e. On -> ( A. y e. x y C_ ( aleph ` y ) -> x C_ ( aleph ` x ) ) ) |
| 23 |
3 6 22
|
tfis3 |
|- ( A e. On -> A C_ ( aleph ` A ) ) |