| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rdglim2a |  |-  ( ( A e. V /\ Lim A ) -> ( rec ( har , _om ) ` A ) = U_ x e. A ( rec ( har , _om ) ` x ) ) | 
						
							| 2 |  | df-aleph |  |-  aleph = rec ( har , _om ) | 
						
							| 3 | 2 | fveq1i |  |-  ( aleph ` A ) = ( rec ( har , _om ) ` A ) | 
						
							| 4 | 2 | fveq1i |  |-  ( aleph ` x ) = ( rec ( har , _om ) ` x ) | 
						
							| 5 | 4 | a1i |  |-  ( x e. A -> ( aleph ` x ) = ( rec ( har , _om ) ` x ) ) | 
						
							| 6 | 5 | iuneq2i |  |-  U_ x e. A ( aleph ` x ) = U_ x e. A ( rec ( har , _om ) ` x ) | 
						
							| 7 | 1 3 6 | 3eqtr4g |  |-  ( ( A e. V /\ Lim A ) -> ( aleph ` A ) = U_ x e. A ( aleph ` x ) ) |