| Step |
Hyp |
Ref |
Expression |
| 1 |
|
alephgeom |
|- ( A e. On <-> _om C_ ( aleph ` A ) ) |
| 2 |
|
fvex |
|- ( aleph ` A ) e. _V |
| 3 |
|
ssdomg |
|- ( ( aleph ` A ) e. _V -> ( _om C_ ( aleph ` A ) -> _om ~<_ ( aleph ` A ) ) ) |
| 4 |
2 3
|
ax-mp |
|- ( _om C_ ( aleph ` A ) -> _om ~<_ ( aleph ` A ) ) |
| 5 |
1 4
|
sylbi |
|- ( A e. On -> _om ~<_ ( aleph ` A ) ) |
| 6 |
|
alephon |
|- ( aleph ` A ) e. On |
| 7 |
|
onenon |
|- ( ( aleph ` A ) e. On -> ( aleph ` A ) e. dom card ) |
| 8 |
6 7
|
ax-mp |
|- ( aleph ` A ) e. dom card |
| 9 |
5 8
|
jctil |
|- ( A e. On -> ( ( aleph ` A ) e. dom card /\ _om ~<_ ( aleph ` A ) ) ) |
| 10 |
|
alephgeom |
|- ( B e. On <-> _om C_ ( aleph ` B ) ) |
| 11 |
|
fvex |
|- ( aleph ` B ) e. _V |
| 12 |
|
ssdomg |
|- ( ( aleph ` B ) e. _V -> ( _om C_ ( aleph ` B ) -> _om ~<_ ( aleph ` B ) ) ) |
| 13 |
11 12
|
ax-mp |
|- ( _om C_ ( aleph ` B ) -> _om ~<_ ( aleph ` B ) ) |
| 14 |
|
infn0 |
|- ( _om ~<_ ( aleph ` B ) -> ( aleph ` B ) =/= (/) ) |
| 15 |
13 14
|
syl |
|- ( _om C_ ( aleph ` B ) -> ( aleph ` B ) =/= (/) ) |
| 16 |
10 15
|
sylbi |
|- ( B e. On -> ( aleph ` B ) =/= (/) ) |
| 17 |
|
alephon |
|- ( aleph ` B ) e. On |
| 18 |
|
onenon |
|- ( ( aleph ` B ) e. On -> ( aleph ` B ) e. dom card ) |
| 19 |
17 18
|
ax-mp |
|- ( aleph ` B ) e. dom card |
| 20 |
16 19
|
jctil |
|- ( B e. On -> ( ( aleph ` B ) e. dom card /\ ( aleph ` B ) =/= (/) ) ) |
| 21 |
|
infxp |
|- ( ( ( ( aleph ` A ) e. dom card /\ _om ~<_ ( aleph ` A ) ) /\ ( ( aleph ` B ) e. dom card /\ ( aleph ` B ) =/= (/) ) ) -> ( ( aleph ` A ) X. ( aleph ` B ) ) ~~ ( ( aleph ` A ) u. ( aleph ` B ) ) ) |
| 22 |
9 20 21
|
syl2an |
|- ( ( A e. On /\ B e. On ) -> ( ( aleph ` A ) X. ( aleph ` B ) ) ~~ ( ( aleph ` A ) u. ( aleph ` B ) ) ) |