| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cardidm |
|- ( card ` ( card ` B ) ) = ( card ` B ) |
| 2 |
|
alephnbtwn |
|- ( ( card ` ( card ` B ) ) = ( card ` B ) -> -. ( ( aleph ` A ) e. ( card ` B ) /\ ( card ` B ) e. ( aleph ` suc A ) ) ) |
| 3 |
1 2
|
ax-mp |
|- -. ( ( aleph ` A ) e. ( card ` B ) /\ ( card ` B ) e. ( aleph ` suc A ) ) |
| 4 |
|
alephon |
|- ( aleph ` suc A ) e. On |
| 5 |
|
sdomdom |
|- ( B ~< ( aleph ` suc A ) -> B ~<_ ( aleph ` suc A ) ) |
| 6 |
|
ondomen |
|- ( ( ( aleph ` suc A ) e. On /\ B ~<_ ( aleph ` suc A ) ) -> B e. dom card ) |
| 7 |
4 5 6
|
sylancr |
|- ( B ~< ( aleph ` suc A ) -> B e. dom card ) |
| 8 |
|
cardid2 |
|- ( B e. dom card -> ( card ` B ) ~~ B ) |
| 9 |
7 8
|
syl |
|- ( B ~< ( aleph ` suc A ) -> ( card ` B ) ~~ B ) |
| 10 |
9
|
ensymd |
|- ( B ~< ( aleph ` suc A ) -> B ~~ ( card ` B ) ) |
| 11 |
|
sdomentr |
|- ( ( ( aleph ` A ) ~< B /\ B ~~ ( card ` B ) ) -> ( aleph ` A ) ~< ( card ` B ) ) |
| 12 |
10 11
|
sylan2 |
|- ( ( ( aleph ` A ) ~< B /\ B ~< ( aleph ` suc A ) ) -> ( aleph ` A ) ~< ( card ` B ) ) |
| 13 |
|
alephon |
|- ( aleph ` A ) e. On |
| 14 |
|
cardon |
|- ( card ` B ) e. On |
| 15 |
|
onenon |
|- ( ( card ` B ) e. On -> ( card ` B ) e. dom card ) |
| 16 |
14 15
|
ax-mp |
|- ( card ` B ) e. dom card |
| 17 |
|
cardsdomel |
|- ( ( ( aleph ` A ) e. On /\ ( card ` B ) e. dom card ) -> ( ( aleph ` A ) ~< ( card ` B ) <-> ( aleph ` A ) e. ( card ` ( card ` B ) ) ) ) |
| 18 |
13 16 17
|
mp2an |
|- ( ( aleph ` A ) ~< ( card ` B ) <-> ( aleph ` A ) e. ( card ` ( card ` B ) ) ) |
| 19 |
1
|
eleq2i |
|- ( ( aleph ` A ) e. ( card ` ( card ` B ) ) <-> ( aleph ` A ) e. ( card ` B ) ) |
| 20 |
18 19
|
bitri |
|- ( ( aleph ` A ) ~< ( card ` B ) <-> ( aleph ` A ) e. ( card ` B ) ) |
| 21 |
12 20
|
sylib |
|- ( ( ( aleph ` A ) ~< B /\ B ~< ( aleph ` suc A ) ) -> ( aleph ` A ) e. ( card ` B ) ) |
| 22 |
|
ensdomtr |
|- ( ( ( card ` B ) ~~ B /\ B ~< ( aleph ` suc A ) ) -> ( card ` B ) ~< ( aleph ` suc A ) ) |
| 23 |
9 22
|
mpancom |
|- ( B ~< ( aleph ` suc A ) -> ( card ` B ) ~< ( aleph ` suc A ) ) |
| 24 |
23
|
adantl |
|- ( ( ( aleph ` A ) ~< B /\ B ~< ( aleph ` suc A ) ) -> ( card ` B ) ~< ( aleph ` suc A ) ) |
| 25 |
|
onenon |
|- ( ( aleph ` suc A ) e. On -> ( aleph ` suc A ) e. dom card ) |
| 26 |
4 25
|
ax-mp |
|- ( aleph ` suc A ) e. dom card |
| 27 |
|
cardsdomel |
|- ( ( ( card ` B ) e. On /\ ( aleph ` suc A ) e. dom card ) -> ( ( card ` B ) ~< ( aleph ` suc A ) <-> ( card ` B ) e. ( card ` ( aleph ` suc A ) ) ) ) |
| 28 |
14 26 27
|
mp2an |
|- ( ( card ` B ) ~< ( aleph ` suc A ) <-> ( card ` B ) e. ( card ` ( aleph ` suc A ) ) ) |
| 29 |
|
alephcard |
|- ( card ` ( aleph ` suc A ) ) = ( aleph ` suc A ) |
| 30 |
29
|
eleq2i |
|- ( ( card ` B ) e. ( card ` ( aleph ` suc A ) ) <-> ( card ` B ) e. ( aleph ` suc A ) ) |
| 31 |
28 30
|
bitri |
|- ( ( card ` B ) ~< ( aleph ` suc A ) <-> ( card ` B ) e. ( aleph ` suc A ) ) |
| 32 |
24 31
|
sylib |
|- ( ( ( aleph ` A ) ~< B /\ B ~< ( aleph ` suc A ) ) -> ( card ` B ) e. ( aleph ` suc A ) ) |
| 33 |
21 32
|
jca |
|- ( ( ( aleph ` A ) ~< B /\ B ~< ( aleph ` suc A ) ) -> ( ( aleph ` A ) e. ( card ` B ) /\ ( card ` B ) e. ( aleph ` suc A ) ) ) |
| 34 |
3 33
|
mto |
|- -. ( ( aleph ` A ) ~< B /\ B ~< ( aleph ` suc A ) ) |