| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sdomirr |  |-  -. _om ~< _om | 
						
							| 2 |  | 2onn |  |-  2o e. _om | 
						
							| 3 | 2 | elexi |  |-  2o e. _V | 
						
							| 4 |  | domrefg |  |-  ( 2o e. _V -> 2o ~<_ 2o ) | 
						
							| 5 | 3 | cfpwsdom |  |-  ( 2o ~<_ 2o -> ( aleph ` (/) ) ~< ( cf ` ( card ` ( 2o ^m ( aleph ` (/) ) ) ) ) ) | 
						
							| 6 | 3 4 5 | mp2b |  |-  ( aleph ` (/) ) ~< ( cf ` ( card ` ( 2o ^m ( aleph ` (/) ) ) ) ) | 
						
							| 7 |  | aleph0 |  |-  ( aleph ` (/) ) = _om | 
						
							| 8 | 7 | a1i |  |-  ( ( card ` ( 2o ^m _om ) ) = ( aleph ` _om ) -> ( aleph ` (/) ) = _om ) | 
						
							| 9 | 7 | oveq2i |  |-  ( 2o ^m ( aleph ` (/) ) ) = ( 2o ^m _om ) | 
						
							| 10 | 9 | fveq2i |  |-  ( card ` ( 2o ^m ( aleph ` (/) ) ) ) = ( card ` ( 2o ^m _om ) ) | 
						
							| 11 | 10 | eqeq1i |  |-  ( ( card ` ( 2o ^m ( aleph ` (/) ) ) ) = ( aleph ` _om ) <-> ( card ` ( 2o ^m _om ) ) = ( aleph ` _om ) ) | 
						
							| 12 | 11 | biimpri |  |-  ( ( card ` ( 2o ^m _om ) ) = ( aleph ` _om ) -> ( card ` ( 2o ^m ( aleph ` (/) ) ) ) = ( aleph ` _om ) ) | 
						
							| 13 | 12 | fveq2d |  |-  ( ( card ` ( 2o ^m _om ) ) = ( aleph ` _om ) -> ( cf ` ( card ` ( 2o ^m ( aleph ` (/) ) ) ) ) = ( cf ` ( aleph ` _om ) ) ) | 
						
							| 14 |  | limom |  |-  Lim _om | 
						
							| 15 |  | alephsing |  |-  ( Lim _om -> ( cf ` ( aleph ` _om ) ) = ( cf ` _om ) ) | 
						
							| 16 | 14 15 | ax-mp |  |-  ( cf ` ( aleph ` _om ) ) = ( cf ` _om ) | 
						
							| 17 |  | cfom |  |-  ( cf ` _om ) = _om | 
						
							| 18 | 16 17 | eqtri |  |-  ( cf ` ( aleph ` _om ) ) = _om | 
						
							| 19 | 13 18 | eqtrdi |  |-  ( ( card ` ( 2o ^m _om ) ) = ( aleph ` _om ) -> ( cf ` ( card ` ( 2o ^m ( aleph ` (/) ) ) ) ) = _om ) | 
						
							| 20 | 8 19 | breq12d |  |-  ( ( card ` ( 2o ^m _om ) ) = ( aleph ` _om ) -> ( ( aleph ` (/) ) ~< ( cf ` ( card ` ( 2o ^m ( aleph ` (/) ) ) ) ) <-> _om ~< _om ) ) | 
						
							| 21 | 6 20 | mpbii |  |-  ( ( card ` ( 2o ^m _om ) ) = ( aleph ` _om ) -> _om ~< _om ) | 
						
							| 22 | 21 | necon3bi |  |-  ( -. _om ~< _om -> ( card ` ( 2o ^m _om ) ) =/= ( aleph ` _om ) ) | 
						
							| 23 | 1 22 | ax-mp |  |-  ( card ` ( 2o ^m _om ) ) =/= ( aleph ` _om ) |