| Step | Hyp | Ref | Expression | 
						
							| 1 |  | alephfnon |  |-  aleph Fn On | 
						
							| 2 |  | fveq2 |  |-  ( x = (/) -> ( aleph ` x ) = ( aleph ` (/) ) ) | 
						
							| 3 | 2 | eleq1d |  |-  ( x = (/) -> ( ( aleph ` x ) e. On <-> ( aleph ` (/) ) e. On ) ) | 
						
							| 4 |  | fveq2 |  |-  ( x = y -> ( aleph ` x ) = ( aleph ` y ) ) | 
						
							| 5 | 4 | eleq1d |  |-  ( x = y -> ( ( aleph ` x ) e. On <-> ( aleph ` y ) e. On ) ) | 
						
							| 6 |  | fveq2 |  |-  ( x = suc y -> ( aleph ` x ) = ( aleph ` suc y ) ) | 
						
							| 7 | 6 | eleq1d |  |-  ( x = suc y -> ( ( aleph ` x ) e. On <-> ( aleph ` suc y ) e. On ) ) | 
						
							| 8 |  | aleph0 |  |-  ( aleph ` (/) ) = _om | 
						
							| 9 |  | omelon |  |-  _om e. On | 
						
							| 10 | 8 9 | eqeltri |  |-  ( aleph ` (/) ) e. On | 
						
							| 11 |  | alephsuc |  |-  ( y e. On -> ( aleph ` suc y ) = ( har ` ( aleph ` y ) ) ) | 
						
							| 12 |  | harcl |  |-  ( har ` ( aleph ` y ) ) e. On | 
						
							| 13 | 11 12 | eqeltrdi |  |-  ( y e. On -> ( aleph ` suc y ) e. On ) | 
						
							| 14 | 13 | a1d |  |-  ( y e. On -> ( ( aleph ` y ) e. On -> ( aleph ` suc y ) e. On ) ) | 
						
							| 15 |  | vex |  |-  x e. _V | 
						
							| 16 |  | iunon |  |-  ( ( x e. _V /\ A. y e. x ( aleph ` y ) e. On ) -> U_ y e. x ( aleph ` y ) e. On ) | 
						
							| 17 | 15 16 | mpan |  |-  ( A. y e. x ( aleph ` y ) e. On -> U_ y e. x ( aleph ` y ) e. On ) | 
						
							| 18 |  | alephlim |  |-  ( ( x e. _V /\ Lim x ) -> ( aleph ` x ) = U_ y e. x ( aleph ` y ) ) | 
						
							| 19 | 15 18 | mpan |  |-  ( Lim x -> ( aleph ` x ) = U_ y e. x ( aleph ` y ) ) | 
						
							| 20 | 19 | eleq1d |  |-  ( Lim x -> ( ( aleph ` x ) e. On <-> U_ y e. x ( aleph ` y ) e. On ) ) | 
						
							| 21 | 17 20 | imbitrrid |  |-  ( Lim x -> ( A. y e. x ( aleph ` y ) e. On -> ( aleph ` x ) e. On ) ) | 
						
							| 22 | 3 5 7 5 10 14 21 | tfinds |  |-  ( y e. On -> ( aleph ` y ) e. On ) | 
						
							| 23 | 22 | rgen |  |-  A. y e. On ( aleph ` y ) e. On | 
						
							| 24 |  | ffnfv |  |-  ( aleph : On --> On <-> ( aleph Fn On /\ A. y e. On ( aleph ` y ) e. On ) ) | 
						
							| 25 | 1 23 24 | mpbir2an |  |-  aleph : On --> On | 
						
							| 26 |  | 0elon |  |-  (/) e. On | 
						
							| 27 | 25 26 | f0cli |  |-  ( aleph ` A ) e. On |