Step |
Hyp |
Ref |
Expression |
1 |
|
alephordi |
|- ( B e. On -> ( A e. B -> ( aleph ` A ) ~< ( aleph ` B ) ) ) |
2 |
1
|
adantl |
|- ( ( A e. On /\ B e. On ) -> ( A e. B -> ( aleph ` A ) ~< ( aleph ` B ) ) ) |
3 |
|
brsdom |
|- ( ( aleph ` A ) ~< ( aleph ` B ) <-> ( ( aleph ` A ) ~<_ ( aleph ` B ) /\ -. ( aleph ` A ) ~~ ( aleph ` B ) ) ) |
4 |
|
alephon |
|- ( aleph ` A ) e. On |
5 |
|
alephon |
|- ( aleph ` B ) e. On |
6 |
|
domtriord |
|- ( ( ( aleph ` A ) e. On /\ ( aleph ` B ) e. On ) -> ( ( aleph ` A ) ~<_ ( aleph ` B ) <-> -. ( aleph ` B ) ~< ( aleph ` A ) ) ) |
7 |
4 5 6
|
mp2an |
|- ( ( aleph ` A ) ~<_ ( aleph ` B ) <-> -. ( aleph ` B ) ~< ( aleph ` A ) ) |
8 |
|
alephordi |
|- ( A e. On -> ( B e. A -> ( aleph ` B ) ~< ( aleph ` A ) ) ) |
9 |
8
|
con3d |
|- ( A e. On -> ( -. ( aleph ` B ) ~< ( aleph ` A ) -> -. B e. A ) ) |
10 |
7 9
|
syl5bi |
|- ( A e. On -> ( ( aleph ` A ) ~<_ ( aleph ` B ) -> -. B e. A ) ) |
11 |
10
|
adantr |
|- ( ( A e. On /\ B e. On ) -> ( ( aleph ` A ) ~<_ ( aleph ` B ) -> -. B e. A ) ) |
12 |
|
ontri1 |
|- ( ( A e. On /\ B e. On ) -> ( A C_ B <-> -. B e. A ) ) |
13 |
11 12
|
sylibrd |
|- ( ( A e. On /\ B e. On ) -> ( ( aleph ` A ) ~<_ ( aleph ` B ) -> A C_ B ) ) |
14 |
|
fveq2 |
|- ( A = B -> ( aleph ` A ) = ( aleph ` B ) ) |
15 |
|
eqeng |
|- ( ( aleph ` A ) e. On -> ( ( aleph ` A ) = ( aleph ` B ) -> ( aleph ` A ) ~~ ( aleph ` B ) ) ) |
16 |
4 14 15
|
mpsyl |
|- ( A = B -> ( aleph ` A ) ~~ ( aleph ` B ) ) |
17 |
16
|
necon3bi |
|- ( -. ( aleph ` A ) ~~ ( aleph ` B ) -> A =/= B ) |
18 |
13 17
|
anim12d1 |
|- ( ( A e. On /\ B e. On ) -> ( ( ( aleph ` A ) ~<_ ( aleph ` B ) /\ -. ( aleph ` A ) ~~ ( aleph ` B ) ) -> ( A C_ B /\ A =/= B ) ) ) |
19 |
|
onelpss |
|- ( ( A e. On /\ B e. On ) -> ( A e. B <-> ( A C_ B /\ A =/= B ) ) ) |
20 |
18 19
|
sylibrd |
|- ( ( A e. On /\ B e. On ) -> ( ( ( aleph ` A ) ~<_ ( aleph ` B ) /\ -. ( aleph ` A ) ~~ ( aleph ` B ) ) -> A e. B ) ) |
21 |
3 20
|
syl5bi |
|- ( ( A e. On /\ B e. On ) -> ( ( aleph ` A ) ~< ( aleph ` B ) -> A e. B ) ) |
22 |
2 21
|
impbid |
|- ( ( A e. On /\ B e. On ) -> ( A e. B <-> ( aleph ` A ) ~< ( aleph ` B ) ) ) |