| Step | Hyp | Ref | Expression | 
						
							| 1 |  | alephord2 |  |-  ( ( B e. On /\ A e. On ) -> ( B e. A <-> ( aleph ` B ) e. ( aleph ` A ) ) ) | 
						
							| 2 | 1 | ancoms |  |-  ( ( A e. On /\ B e. On ) -> ( B e. A <-> ( aleph ` B ) e. ( aleph ` A ) ) ) | 
						
							| 3 | 2 | notbid |  |-  ( ( A e. On /\ B e. On ) -> ( -. B e. A <-> -. ( aleph ` B ) e. ( aleph ` A ) ) ) | 
						
							| 4 |  | ontri1 |  |-  ( ( A e. On /\ B e. On ) -> ( A C_ B <-> -. B e. A ) ) | 
						
							| 5 |  | alephon |  |-  ( aleph ` A ) e. On | 
						
							| 6 |  | alephon |  |-  ( aleph ` B ) e. On | 
						
							| 7 |  | ontri1 |  |-  ( ( ( aleph ` A ) e. On /\ ( aleph ` B ) e. On ) -> ( ( aleph ` A ) C_ ( aleph ` B ) <-> -. ( aleph ` B ) e. ( aleph ` A ) ) ) | 
						
							| 8 | 5 6 7 | mp2an |  |-  ( ( aleph ` A ) C_ ( aleph ` B ) <-> -. ( aleph ` B ) e. ( aleph ` A ) ) | 
						
							| 9 | 8 | a1i |  |-  ( ( A e. On /\ B e. On ) -> ( ( aleph ` A ) C_ ( aleph ` B ) <-> -. ( aleph ` B ) e. ( aleph ` A ) ) ) | 
						
							| 10 | 3 4 9 | 3bitr4d |  |-  ( ( A e. On /\ B e. On ) -> ( A C_ B <-> ( aleph ` A ) C_ ( aleph ` B ) ) ) |