Step |
Hyp |
Ref |
Expression |
1 |
|
eleq2 |
|- ( x = (/) -> ( A e. x <-> A e. (/) ) ) |
2 |
|
fveq2 |
|- ( x = (/) -> ( aleph ` x ) = ( aleph ` (/) ) ) |
3 |
2
|
breq2d |
|- ( x = (/) -> ( ( aleph ` A ) ~< ( aleph ` x ) <-> ( aleph ` A ) ~< ( aleph ` (/) ) ) ) |
4 |
1 3
|
imbi12d |
|- ( x = (/) -> ( ( A e. x -> ( aleph ` A ) ~< ( aleph ` x ) ) <-> ( A e. (/) -> ( aleph ` A ) ~< ( aleph ` (/) ) ) ) ) |
5 |
|
eleq2 |
|- ( x = y -> ( A e. x <-> A e. y ) ) |
6 |
|
fveq2 |
|- ( x = y -> ( aleph ` x ) = ( aleph ` y ) ) |
7 |
6
|
breq2d |
|- ( x = y -> ( ( aleph ` A ) ~< ( aleph ` x ) <-> ( aleph ` A ) ~< ( aleph ` y ) ) ) |
8 |
5 7
|
imbi12d |
|- ( x = y -> ( ( A e. x -> ( aleph ` A ) ~< ( aleph ` x ) ) <-> ( A e. y -> ( aleph ` A ) ~< ( aleph ` y ) ) ) ) |
9 |
|
eleq2 |
|- ( x = suc y -> ( A e. x <-> A e. suc y ) ) |
10 |
|
fveq2 |
|- ( x = suc y -> ( aleph ` x ) = ( aleph ` suc y ) ) |
11 |
10
|
breq2d |
|- ( x = suc y -> ( ( aleph ` A ) ~< ( aleph ` x ) <-> ( aleph ` A ) ~< ( aleph ` suc y ) ) ) |
12 |
9 11
|
imbi12d |
|- ( x = suc y -> ( ( A e. x -> ( aleph ` A ) ~< ( aleph ` x ) ) <-> ( A e. suc y -> ( aleph ` A ) ~< ( aleph ` suc y ) ) ) ) |
13 |
|
eleq2 |
|- ( x = B -> ( A e. x <-> A e. B ) ) |
14 |
|
fveq2 |
|- ( x = B -> ( aleph ` x ) = ( aleph ` B ) ) |
15 |
14
|
breq2d |
|- ( x = B -> ( ( aleph ` A ) ~< ( aleph ` x ) <-> ( aleph ` A ) ~< ( aleph ` B ) ) ) |
16 |
13 15
|
imbi12d |
|- ( x = B -> ( ( A e. x -> ( aleph ` A ) ~< ( aleph ` x ) ) <-> ( A e. B -> ( aleph ` A ) ~< ( aleph ` B ) ) ) ) |
17 |
|
noel |
|- -. A e. (/) |
18 |
17
|
pm2.21i |
|- ( A e. (/) -> ( aleph ` A ) ~< ( aleph ` (/) ) ) |
19 |
|
vex |
|- y e. _V |
20 |
19
|
elsuc2 |
|- ( A e. suc y <-> ( A e. y \/ A = y ) ) |
21 |
|
alephordilem1 |
|- ( y e. On -> ( aleph ` y ) ~< ( aleph ` suc y ) ) |
22 |
|
sdomtr |
|- ( ( ( aleph ` A ) ~< ( aleph ` y ) /\ ( aleph ` y ) ~< ( aleph ` suc y ) ) -> ( aleph ` A ) ~< ( aleph ` suc y ) ) |
23 |
21 22
|
sylan2 |
|- ( ( ( aleph ` A ) ~< ( aleph ` y ) /\ y e. On ) -> ( aleph ` A ) ~< ( aleph ` suc y ) ) |
24 |
23
|
expcom |
|- ( y e. On -> ( ( aleph ` A ) ~< ( aleph ` y ) -> ( aleph ` A ) ~< ( aleph ` suc y ) ) ) |
25 |
24
|
imim2d |
|- ( y e. On -> ( ( A e. y -> ( aleph ` A ) ~< ( aleph ` y ) ) -> ( A e. y -> ( aleph ` A ) ~< ( aleph ` suc y ) ) ) ) |
26 |
25
|
com23 |
|- ( y e. On -> ( A e. y -> ( ( A e. y -> ( aleph ` A ) ~< ( aleph ` y ) ) -> ( aleph ` A ) ~< ( aleph ` suc y ) ) ) ) |
27 |
|
fveq2 |
|- ( A = y -> ( aleph ` A ) = ( aleph ` y ) ) |
28 |
27
|
breq1d |
|- ( A = y -> ( ( aleph ` A ) ~< ( aleph ` suc y ) <-> ( aleph ` y ) ~< ( aleph ` suc y ) ) ) |
29 |
21 28
|
syl5ibr |
|- ( A = y -> ( y e. On -> ( aleph ` A ) ~< ( aleph ` suc y ) ) ) |
30 |
29
|
a1d |
|- ( A = y -> ( ( A e. y -> ( aleph ` A ) ~< ( aleph ` y ) ) -> ( y e. On -> ( aleph ` A ) ~< ( aleph ` suc y ) ) ) ) |
31 |
30
|
com3r |
|- ( y e. On -> ( A = y -> ( ( A e. y -> ( aleph ` A ) ~< ( aleph ` y ) ) -> ( aleph ` A ) ~< ( aleph ` suc y ) ) ) ) |
32 |
26 31
|
jaod |
|- ( y e. On -> ( ( A e. y \/ A = y ) -> ( ( A e. y -> ( aleph ` A ) ~< ( aleph ` y ) ) -> ( aleph ` A ) ~< ( aleph ` suc y ) ) ) ) |
33 |
20 32
|
syl5bi |
|- ( y e. On -> ( A e. suc y -> ( ( A e. y -> ( aleph ` A ) ~< ( aleph ` y ) ) -> ( aleph ` A ) ~< ( aleph ` suc y ) ) ) ) |
34 |
33
|
com23 |
|- ( y e. On -> ( ( A e. y -> ( aleph ` A ) ~< ( aleph ` y ) ) -> ( A e. suc y -> ( aleph ` A ) ~< ( aleph ` suc y ) ) ) ) |
35 |
|
fvexd |
|- ( Lim x -> ( aleph ` x ) e. _V ) |
36 |
|
fveq2 |
|- ( w = A -> ( aleph ` w ) = ( aleph ` A ) ) |
37 |
36
|
ssiun2s |
|- ( A e. x -> ( aleph ` A ) C_ U_ w e. x ( aleph ` w ) ) |
38 |
|
vex |
|- x e. _V |
39 |
|
alephlim |
|- ( ( x e. _V /\ Lim x ) -> ( aleph ` x ) = U_ w e. x ( aleph ` w ) ) |
40 |
38 39
|
mpan |
|- ( Lim x -> ( aleph ` x ) = U_ w e. x ( aleph ` w ) ) |
41 |
40
|
sseq2d |
|- ( Lim x -> ( ( aleph ` A ) C_ ( aleph ` x ) <-> ( aleph ` A ) C_ U_ w e. x ( aleph ` w ) ) ) |
42 |
37 41
|
syl5ibr |
|- ( Lim x -> ( A e. x -> ( aleph ` A ) C_ ( aleph ` x ) ) ) |
43 |
|
ssdomg |
|- ( ( aleph ` x ) e. _V -> ( ( aleph ` A ) C_ ( aleph ` x ) -> ( aleph ` A ) ~<_ ( aleph ` x ) ) ) |
44 |
35 42 43
|
sylsyld |
|- ( Lim x -> ( A e. x -> ( aleph ` A ) ~<_ ( aleph ` x ) ) ) |
45 |
|
limsuc |
|- ( Lim x -> ( A e. x <-> suc A e. x ) ) |
46 |
|
fveq2 |
|- ( w = suc A -> ( aleph ` w ) = ( aleph ` suc A ) ) |
47 |
46
|
ssiun2s |
|- ( suc A e. x -> ( aleph ` suc A ) C_ U_ w e. x ( aleph ` w ) ) |
48 |
40
|
sseq2d |
|- ( Lim x -> ( ( aleph ` suc A ) C_ ( aleph ` x ) <-> ( aleph ` suc A ) C_ U_ w e. x ( aleph ` w ) ) ) |
49 |
47 48
|
syl5ibr |
|- ( Lim x -> ( suc A e. x -> ( aleph ` suc A ) C_ ( aleph ` x ) ) ) |
50 |
|
ssdomg |
|- ( ( aleph ` x ) e. _V -> ( ( aleph ` suc A ) C_ ( aleph ` x ) -> ( aleph ` suc A ) ~<_ ( aleph ` x ) ) ) |
51 |
35 49 50
|
sylsyld |
|- ( Lim x -> ( suc A e. x -> ( aleph ` suc A ) ~<_ ( aleph ` x ) ) ) |
52 |
45 51
|
sylbid |
|- ( Lim x -> ( A e. x -> ( aleph ` suc A ) ~<_ ( aleph ` x ) ) ) |
53 |
52
|
imp |
|- ( ( Lim x /\ A e. x ) -> ( aleph ` suc A ) ~<_ ( aleph ` x ) ) |
54 |
|
domnsym |
|- ( ( aleph ` suc A ) ~<_ ( aleph ` x ) -> -. ( aleph ` x ) ~< ( aleph ` suc A ) ) |
55 |
53 54
|
syl |
|- ( ( Lim x /\ A e. x ) -> -. ( aleph ` x ) ~< ( aleph ` suc A ) ) |
56 |
|
limelon |
|- ( ( x e. _V /\ Lim x ) -> x e. On ) |
57 |
38 56
|
mpan |
|- ( Lim x -> x e. On ) |
58 |
|
onelon |
|- ( ( x e. On /\ A e. x ) -> A e. On ) |
59 |
57 58
|
sylan |
|- ( ( Lim x /\ A e. x ) -> A e. On ) |
60 |
|
ensym |
|- ( ( aleph ` A ) ~~ ( aleph ` x ) -> ( aleph ` x ) ~~ ( aleph ` A ) ) |
61 |
|
alephordilem1 |
|- ( A e. On -> ( aleph ` A ) ~< ( aleph ` suc A ) ) |
62 |
|
ensdomtr |
|- ( ( ( aleph ` x ) ~~ ( aleph ` A ) /\ ( aleph ` A ) ~< ( aleph ` suc A ) ) -> ( aleph ` x ) ~< ( aleph ` suc A ) ) |
63 |
62
|
ex |
|- ( ( aleph ` x ) ~~ ( aleph ` A ) -> ( ( aleph ` A ) ~< ( aleph ` suc A ) -> ( aleph ` x ) ~< ( aleph ` suc A ) ) ) |
64 |
60 61 63
|
syl2im |
|- ( ( aleph ` A ) ~~ ( aleph ` x ) -> ( A e. On -> ( aleph ` x ) ~< ( aleph ` suc A ) ) ) |
65 |
59 64
|
syl5com |
|- ( ( Lim x /\ A e. x ) -> ( ( aleph ` A ) ~~ ( aleph ` x ) -> ( aleph ` x ) ~< ( aleph ` suc A ) ) ) |
66 |
55 65
|
mtod |
|- ( ( Lim x /\ A e. x ) -> -. ( aleph ` A ) ~~ ( aleph ` x ) ) |
67 |
66
|
ex |
|- ( Lim x -> ( A e. x -> -. ( aleph ` A ) ~~ ( aleph ` x ) ) ) |
68 |
44 67
|
jcad |
|- ( Lim x -> ( A e. x -> ( ( aleph ` A ) ~<_ ( aleph ` x ) /\ -. ( aleph ` A ) ~~ ( aleph ` x ) ) ) ) |
69 |
|
brsdom |
|- ( ( aleph ` A ) ~< ( aleph ` x ) <-> ( ( aleph ` A ) ~<_ ( aleph ` x ) /\ -. ( aleph ` A ) ~~ ( aleph ` x ) ) ) |
70 |
68 69
|
syl6ibr |
|- ( Lim x -> ( A e. x -> ( aleph ` A ) ~< ( aleph ` x ) ) ) |
71 |
70
|
a1d |
|- ( Lim x -> ( A. y e. x ( A e. y -> ( aleph ` A ) ~< ( aleph ` y ) ) -> ( A e. x -> ( aleph ` A ) ~< ( aleph ` x ) ) ) ) |
72 |
4 8 12 16 18 34 71
|
tfinds |
|- ( B e. On -> ( A e. B -> ( aleph ` A ) ~< ( aleph ` B ) ) ) |