| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eleq2 |
|- ( x = (/) -> ( A e. x <-> A e. (/) ) ) |
| 2 |
|
fveq2 |
|- ( x = (/) -> ( aleph ` x ) = ( aleph ` (/) ) ) |
| 3 |
2
|
breq2d |
|- ( x = (/) -> ( ( aleph ` A ) ~< ( aleph ` x ) <-> ( aleph ` A ) ~< ( aleph ` (/) ) ) ) |
| 4 |
1 3
|
imbi12d |
|- ( x = (/) -> ( ( A e. x -> ( aleph ` A ) ~< ( aleph ` x ) ) <-> ( A e. (/) -> ( aleph ` A ) ~< ( aleph ` (/) ) ) ) ) |
| 5 |
|
eleq2 |
|- ( x = y -> ( A e. x <-> A e. y ) ) |
| 6 |
|
fveq2 |
|- ( x = y -> ( aleph ` x ) = ( aleph ` y ) ) |
| 7 |
6
|
breq2d |
|- ( x = y -> ( ( aleph ` A ) ~< ( aleph ` x ) <-> ( aleph ` A ) ~< ( aleph ` y ) ) ) |
| 8 |
5 7
|
imbi12d |
|- ( x = y -> ( ( A e. x -> ( aleph ` A ) ~< ( aleph ` x ) ) <-> ( A e. y -> ( aleph ` A ) ~< ( aleph ` y ) ) ) ) |
| 9 |
|
eleq2 |
|- ( x = suc y -> ( A e. x <-> A e. suc y ) ) |
| 10 |
|
fveq2 |
|- ( x = suc y -> ( aleph ` x ) = ( aleph ` suc y ) ) |
| 11 |
10
|
breq2d |
|- ( x = suc y -> ( ( aleph ` A ) ~< ( aleph ` x ) <-> ( aleph ` A ) ~< ( aleph ` suc y ) ) ) |
| 12 |
9 11
|
imbi12d |
|- ( x = suc y -> ( ( A e. x -> ( aleph ` A ) ~< ( aleph ` x ) ) <-> ( A e. suc y -> ( aleph ` A ) ~< ( aleph ` suc y ) ) ) ) |
| 13 |
|
eleq2 |
|- ( x = B -> ( A e. x <-> A e. B ) ) |
| 14 |
|
fveq2 |
|- ( x = B -> ( aleph ` x ) = ( aleph ` B ) ) |
| 15 |
14
|
breq2d |
|- ( x = B -> ( ( aleph ` A ) ~< ( aleph ` x ) <-> ( aleph ` A ) ~< ( aleph ` B ) ) ) |
| 16 |
13 15
|
imbi12d |
|- ( x = B -> ( ( A e. x -> ( aleph ` A ) ~< ( aleph ` x ) ) <-> ( A e. B -> ( aleph ` A ) ~< ( aleph ` B ) ) ) ) |
| 17 |
|
noel |
|- -. A e. (/) |
| 18 |
17
|
pm2.21i |
|- ( A e. (/) -> ( aleph ` A ) ~< ( aleph ` (/) ) ) |
| 19 |
|
vex |
|- y e. _V |
| 20 |
19
|
elsuc2 |
|- ( A e. suc y <-> ( A e. y \/ A = y ) ) |
| 21 |
|
alephordilem1 |
|- ( y e. On -> ( aleph ` y ) ~< ( aleph ` suc y ) ) |
| 22 |
|
sdomtr |
|- ( ( ( aleph ` A ) ~< ( aleph ` y ) /\ ( aleph ` y ) ~< ( aleph ` suc y ) ) -> ( aleph ` A ) ~< ( aleph ` suc y ) ) |
| 23 |
21 22
|
sylan2 |
|- ( ( ( aleph ` A ) ~< ( aleph ` y ) /\ y e. On ) -> ( aleph ` A ) ~< ( aleph ` suc y ) ) |
| 24 |
23
|
expcom |
|- ( y e. On -> ( ( aleph ` A ) ~< ( aleph ` y ) -> ( aleph ` A ) ~< ( aleph ` suc y ) ) ) |
| 25 |
24
|
imim2d |
|- ( y e. On -> ( ( A e. y -> ( aleph ` A ) ~< ( aleph ` y ) ) -> ( A e. y -> ( aleph ` A ) ~< ( aleph ` suc y ) ) ) ) |
| 26 |
25
|
com23 |
|- ( y e. On -> ( A e. y -> ( ( A e. y -> ( aleph ` A ) ~< ( aleph ` y ) ) -> ( aleph ` A ) ~< ( aleph ` suc y ) ) ) ) |
| 27 |
|
fveq2 |
|- ( A = y -> ( aleph ` A ) = ( aleph ` y ) ) |
| 28 |
27
|
breq1d |
|- ( A = y -> ( ( aleph ` A ) ~< ( aleph ` suc y ) <-> ( aleph ` y ) ~< ( aleph ` suc y ) ) ) |
| 29 |
21 28
|
imbitrrid |
|- ( A = y -> ( y e. On -> ( aleph ` A ) ~< ( aleph ` suc y ) ) ) |
| 30 |
29
|
a1d |
|- ( A = y -> ( ( A e. y -> ( aleph ` A ) ~< ( aleph ` y ) ) -> ( y e. On -> ( aleph ` A ) ~< ( aleph ` suc y ) ) ) ) |
| 31 |
30
|
com3r |
|- ( y e. On -> ( A = y -> ( ( A e. y -> ( aleph ` A ) ~< ( aleph ` y ) ) -> ( aleph ` A ) ~< ( aleph ` suc y ) ) ) ) |
| 32 |
26 31
|
jaod |
|- ( y e. On -> ( ( A e. y \/ A = y ) -> ( ( A e. y -> ( aleph ` A ) ~< ( aleph ` y ) ) -> ( aleph ` A ) ~< ( aleph ` suc y ) ) ) ) |
| 33 |
20 32
|
biimtrid |
|- ( y e. On -> ( A e. suc y -> ( ( A e. y -> ( aleph ` A ) ~< ( aleph ` y ) ) -> ( aleph ` A ) ~< ( aleph ` suc y ) ) ) ) |
| 34 |
33
|
com23 |
|- ( y e. On -> ( ( A e. y -> ( aleph ` A ) ~< ( aleph ` y ) ) -> ( A e. suc y -> ( aleph ` A ) ~< ( aleph ` suc y ) ) ) ) |
| 35 |
|
fvexd |
|- ( Lim x -> ( aleph ` x ) e. _V ) |
| 36 |
|
fveq2 |
|- ( w = A -> ( aleph ` w ) = ( aleph ` A ) ) |
| 37 |
36
|
ssiun2s |
|- ( A e. x -> ( aleph ` A ) C_ U_ w e. x ( aleph ` w ) ) |
| 38 |
|
vex |
|- x e. _V |
| 39 |
|
alephlim |
|- ( ( x e. _V /\ Lim x ) -> ( aleph ` x ) = U_ w e. x ( aleph ` w ) ) |
| 40 |
38 39
|
mpan |
|- ( Lim x -> ( aleph ` x ) = U_ w e. x ( aleph ` w ) ) |
| 41 |
40
|
sseq2d |
|- ( Lim x -> ( ( aleph ` A ) C_ ( aleph ` x ) <-> ( aleph ` A ) C_ U_ w e. x ( aleph ` w ) ) ) |
| 42 |
37 41
|
imbitrrid |
|- ( Lim x -> ( A e. x -> ( aleph ` A ) C_ ( aleph ` x ) ) ) |
| 43 |
|
ssdomg |
|- ( ( aleph ` x ) e. _V -> ( ( aleph ` A ) C_ ( aleph ` x ) -> ( aleph ` A ) ~<_ ( aleph ` x ) ) ) |
| 44 |
35 42 43
|
sylsyld |
|- ( Lim x -> ( A e. x -> ( aleph ` A ) ~<_ ( aleph ` x ) ) ) |
| 45 |
|
limsuc |
|- ( Lim x -> ( A e. x <-> suc A e. x ) ) |
| 46 |
|
fveq2 |
|- ( w = suc A -> ( aleph ` w ) = ( aleph ` suc A ) ) |
| 47 |
46
|
ssiun2s |
|- ( suc A e. x -> ( aleph ` suc A ) C_ U_ w e. x ( aleph ` w ) ) |
| 48 |
40
|
sseq2d |
|- ( Lim x -> ( ( aleph ` suc A ) C_ ( aleph ` x ) <-> ( aleph ` suc A ) C_ U_ w e. x ( aleph ` w ) ) ) |
| 49 |
47 48
|
imbitrrid |
|- ( Lim x -> ( suc A e. x -> ( aleph ` suc A ) C_ ( aleph ` x ) ) ) |
| 50 |
|
ssdomg |
|- ( ( aleph ` x ) e. _V -> ( ( aleph ` suc A ) C_ ( aleph ` x ) -> ( aleph ` suc A ) ~<_ ( aleph ` x ) ) ) |
| 51 |
35 49 50
|
sylsyld |
|- ( Lim x -> ( suc A e. x -> ( aleph ` suc A ) ~<_ ( aleph ` x ) ) ) |
| 52 |
45 51
|
sylbid |
|- ( Lim x -> ( A e. x -> ( aleph ` suc A ) ~<_ ( aleph ` x ) ) ) |
| 53 |
52
|
imp |
|- ( ( Lim x /\ A e. x ) -> ( aleph ` suc A ) ~<_ ( aleph ` x ) ) |
| 54 |
|
domnsym |
|- ( ( aleph ` suc A ) ~<_ ( aleph ` x ) -> -. ( aleph ` x ) ~< ( aleph ` suc A ) ) |
| 55 |
53 54
|
syl |
|- ( ( Lim x /\ A e. x ) -> -. ( aleph ` x ) ~< ( aleph ` suc A ) ) |
| 56 |
|
limelon |
|- ( ( x e. _V /\ Lim x ) -> x e. On ) |
| 57 |
38 56
|
mpan |
|- ( Lim x -> x e. On ) |
| 58 |
|
onelon |
|- ( ( x e. On /\ A e. x ) -> A e. On ) |
| 59 |
57 58
|
sylan |
|- ( ( Lim x /\ A e. x ) -> A e. On ) |
| 60 |
|
ensym |
|- ( ( aleph ` A ) ~~ ( aleph ` x ) -> ( aleph ` x ) ~~ ( aleph ` A ) ) |
| 61 |
|
alephordilem1 |
|- ( A e. On -> ( aleph ` A ) ~< ( aleph ` suc A ) ) |
| 62 |
|
ensdomtr |
|- ( ( ( aleph ` x ) ~~ ( aleph ` A ) /\ ( aleph ` A ) ~< ( aleph ` suc A ) ) -> ( aleph ` x ) ~< ( aleph ` suc A ) ) |
| 63 |
62
|
ex |
|- ( ( aleph ` x ) ~~ ( aleph ` A ) -> ( ( aleph ` A ) ~< ( aleph ` suc A ) -> ( aleph ` x ) ~< ( aleph ` suc A ) ) ) |
| 64 |
60 61 63
|
syl2im |
|- ( ( aleph ` A ) ~~ ( aleph ` x ) -> ( A e. On -> ( aleph ` x ) ~< ( aleph ` suc A ) ) ) |
| 65 |
59 64
|
syl5com |
|- ( ( Lim x /\ A e. x ) -> ( ( aleph ` A ) ~~ ( aleph ` x ) -> ( aleph ` x ) ~< ( aleph ` suc A ) ) ) |
| 66 |
55 65
|
mtod |
|- ( ( Lim x /\ A e. x ) -> -. ( aleph ` A ) ~~ ( aleph ` x ) ) |
| 67 |
66
|
ex |
|- ( Lim x -> ( A e. x -> -. ( aleph ` A ) ~~ ( aleph ` x ) ) ) |
| 68 |
44 67
|
jcad |
|- ( Lim x -> ( A e. x -> ( ( aleph ` A ) ~<_ ( aleph ` x ) /\ -. ( aleph ` A ) ~~ ( aleph ` x ) ) ) ) |
| 69 |
|
brsdom |
|- ( ( aleph ` A ) ~< ( aleph ` x ) <-> ( ( aleph ` A ) ~<_ ( aleph ` x ) /\ -. ( aleph ` A ) ~~ ( aleph ` x ) ) ) |
| 70 |
68 69
|
imbitrrdi |
|- ( Lim x -> ( A e. x -> ( aleph ` A ) ~< ( aleph ` x ) ) ) |
| 71 |
70
|
a1d |
|- ( Lim x -> ( A. y e. x ( A e. y -> ( aleph ` A ) ~< ( aleph ` y ) ) -> ( A e. x -> ( aleph ` A ) ~< ( aleph ` x ) ) ) ) |
| 72 |
4 8 12 16 18 34 71
|
tfinds |
|- ( B e. On -> ( A e. B -> ( aleph ` A ) ~< ( aleph ` B ) ) ) |