Metamath Proof Explorer


Theorem alephprc

Description: The class of all transfinite cardinal numbers (the range of the aleph function) is a proper class. Proposition 10.26 of TakeutiZaring p. 90. (Contributed by NM, 11-Nov-2003)

Ref Expression
Assertion alephprc
|- -. ran aleph e. _V

Proof

Step Hyp Ref Expression
1 cardprc
 |-  { x | ( card ` x ) = x } e/ _V
2 1 neli
 |-  -. { x | ( card ` x ) = x } e. _V
3 cardnum
 |-  { x | ( card ` x ) = x } = ( _om u. ran aleph )
4 3 eleq1i
 |-  ( { x | ( card ` x ) = x } e. _V <-> ( _om u. ran aleph ) e. _V )
5 2 4 mtbi
 |-  -. ( _om u. ran aleph ) e. _V
6 omex
 |-  _om e. _V
7 unexg
 |-  ( ( _om e. _V /\ ran aleph e. _V ) -> ( _om u. ran aleph ) e. _V )
8 6 7 mpan
 |-  ( ran aleph e. _V -> ( _om u. ran aleph ) e. _V )
9 5 8 mto
 |-  -. ran aleph e. _V