| Step | Hyp | Ref | Expression | 
						
							| 1 |  | alephordilem1 |  |-  ( A e. On -> ( aleph ` A ) ~< ( aleph ` suc A ) ) | 
						
							| 2 |  | alephon |  |-  ( aleph ` suc A ) e. On | 
						
							| 3 |  | cff1 |  |-  ( ( aleph ` suc A ) e. On -> E. f ( f : ( cf ` ( aleph ` suc A ) ) -1-1-> ( aleph ` suc A ) /\ A. x e. ( aleph ` suc A ) E. y e. ( cf ` ( aleph ` suc A ) ) x C_ ( f ` y ) ) ) | 
						
							| 4 | 2 3 | ax-mp |  |-  E. f ( f : ( cf ` ( aleph ` suc A ) ) -1-1-> ( aleph ` suc A ) /\ A. x e. ( aleph ` suc A ) E. y e. ( cf ` ( aleph ` suc A ) ) x C_ ( f ` y ) ) | 
						
							| 5 |  | fvex |  |-  ( cf ` ( aleph ` suc A ) ) e. _V | 
						
							| 6 |  | fvex |  |-  ( f ` y ) e. _V | 
						
							| 7 | 6 | sucex |  |-  suc ( f ` y ) e. _V | 
						
							| 8 | 5 7 | iunex |  |-  U_ y e. ( cf ` ( aleph ` suc A ) ) suc ( f ` y ) e. _V | 
						
							| 9 |  | f1f |  |-  ( f : ( cf ` ( aleph ` suc A ) ) -1-1-> ( aleph ` suc A ) -> f : ( cf ` ( aleph ` suc A ) ) --> ( aleph ` suc A ) ) | 
						
							| 10 | 9 | ad2antrr |  |-  ( ( ( f : ( cf ` ( aleph ` suc A ) ) -1-1-> ( aleph ` suc A ) /\ A. x e. ( aleph ` suc A ) E. y e. ( cf ` ( aleph ` suc A ) ) x C_ ( f ` y ) ) /\ ( A e. On /\ ( cf ` ( aleph ` suc A ) ) e. ( aleph ` suc A ) ) ) -> f : ( cf ` ( aleph ` suc A ) ) --> ( aleph ` suc A ) ) | 
						
							| 11 |  | simplr |  |-  ( ( ( f : ( cf ` ( aleph ` suc A ) ) -1-1-> ( aleph ` suc A ) /\ A. x e. ( aleph ` suc A ) E. y e. ( cf ` ( aleph ` suc A ) ) x C_ ( f ` y ) ) /\ ( A e. On /\ ( cf ` ( aleph ` suc A ) ) e. ( aleph ` suc A ) ) ) -> A. x e. ( aleph ` suc A ) E. y e. ( cf ` ( aleph ` suc A ) ) x C_ ( f ` y ) ) | 
						
							| 12 | 2 | oneli |  |-  ( x e. ( aleph ` suc A ) -> x e. On ) | 
						
							| 13 |  | ffvelcdm |  |-  ( ( f : ( cf ` ( aleph ` suc A ) ) --> ( aleph ` suc A ) /\ y e. ( cf ` ( aleph ` suc A ) ) ) -> ( f ` y ) e. ( aleph ` suc A ) ) | 
						
							| 14 |  | onelon |  |-  ( ( ( aleph ` suc A ) e. On /\ ( f ` y ) e. ( aleph ` suc A ) ) -> ( f ` y ) e. On ) | 
						
							| 15 | 2 13 14 | sylancr |  |-  ( ( f : ( cf ` ( aleph ` suc A ) ) --> ( aleph ` suc A ) /\ y e. ( cf ` ( aleph ` suc A ) ) ) -> ( f ` y ) e. On ) | 
						
							| 16 |  | onsssuc |  |-  ( ( x e. On /\ ( f ` y ) e. On ) -> ( x C_ ( f ` y ) <-> x e. suc ( f ` y ) ) ) | 
						
							| 17 | 15 16 | sylan2 |  |-  ( ( x e. On /\ ( f : ( cf ` ( aleph ` suc A ) ) --> ( aleph ` suc A ) /\ y e. ( cf ` ( aleph ` suc A ) ) ) ) -> ( x C_ ( f ` y ) <-> x e. suc ( f ` y ) ) ) | 
						
							| 18 | 17 | anassrs |  |-  ( ( ( x e. On /\ f : ( cf ` ( aleph ` suc A ) ) --> ( aleph ` suc A ) ) /\ y e. ( cf ` ( aleph ` suc A ) ) ) -> ( x C_ ( f ` y ) <-> x e. suc ( f ` y ) ) ) | 
						
							| 19 | 18 | rexbidva |  |-  ( ( x e. On /\ f : ( cf ` ( aleph ` suc A ) ) --> ( aleph ` suc A ) ) -> ( E. y e. ( cf ` ( aleph ` suc A ) ) x C_ ( f ` y ) <-> E. y e. ( cf ` ( aleph ` suc A ) ) x e. suc ( f ` y ) ) ) | 
						
							| 20 |  | eliun |  |-  ( x e. U_ y e. ( cf ` ( aleph ` suc A ) ) suc ( f ` y ) <-> E. y e. ( cf ` ( aleph ` suc A ) ) x e. suc ( f ` y ) ) | 
						
							| 21 | 19 20 | bitr4di |  |-  ( ( x e. On /\ f : ( cf ` ( aleph ` suc A ) ) --> ( aleph ` suc A ) ) -> ( E. y e. ( cf ` ( aleph ` suc A ) ) x C_ ( f ` y ) <-> x e. U_ y e. ( cf ` ( aleph ` suc A ) ) suc ( f ` y ) ) ) | 
						
							| 22 | 21 | ancoms |  |-  ( ( f : ( cf ` ( aleph ` suc A ) ) --> ( aleph ` suc A ) /\ x e. On ) -> ( E. y e. ( cf ` ( aleph ` suc A ) ) x C_ ( f ` y ) <-> x e. U_ y e. ( cf ` ( aleph ` suc A ) ) suc ( f ` y ) ) ) | 
						
							| 23 | 12 22 | sylan2 |  |-  ( ( f : ( cf ` ( aleph ` suc A ) ) --> ( aleph ` suc A ) /\ x e. ( aleph ` suc A ) ) -> ( E. y e. ( cf ` ( aleph ` suc A ) ) x C_ ( f ` y ) <-> x e. U_ y e. ( cf ` ( aleph ` suc A ) ) suc ( f ` y ) ) ) | 
						
							| 24 | 23 | ralbidva |  |-  ( f : ( cf ` ( aleph ` suc A ) ) --> ( aleph ` suc A ) -> ( A. x e. ( aleph ` suc A ) E. y e. ( cf ` ( aleph ` suc A ) ) x C_ ( f ` y ) <-> A. x e. ( aleph ` suc A ) x e. U_ y e. ( cf ` ( aleph ` suc A ) ) suc ( f ` y ) ) ) | 
						
							| 25 |  | dfss3 |  |-  ( ( aleph ` suc A ) C_ U_ y e. ( cf ` ( aleph ` suc A ) ) suc ( f ` y ) <-> A. x e. ( aleph ` suc A ) x e. U_ y e. ( cf ` ( aleph ` suc A ) ) suc ( f ` y ) ) | 
						
							| 26 | 24 25 | bitr4di |  |-  ( f : ( cf ` ( aleph ` suc A ) ) --> ( aleph ` suc A ) -> ( A. x e. ( aleph ` suc A ) E. y e. ( cf ` ( aleph ` suc A ) ) x C_ ( f ` y ) <-> ( aleph ` suc A ) C_ U_ y e. ( cf ` ( aleph ` suc A ) ) suc ( f ` y ) ) ) | 
						
							| 27 | 26 | biimpa |  |-  ( ( f : ( cf ` ( aleph ` suc A ) ) --> ( aleph ` suc A ) /\ A. x e. ( aleph ` suc A ) E. y e. ( cf ` ( aleph ` suc A ) ) x C_ ( f ` y ) ) -> ( aleph ` suc A ) C_ U_ y e. ( cf ` ( aleph ` suc A ) ) suc ( f ` y ) ) | 
						
							| 28 | 10 11 27 | syl2anc |  |-  ( ( ( f : ( cf ` ( aleph ` suc A ) ) -1-1-> ( aleph ` suc A ) /\ A. x e. ( aleph ` suc A ) E. y e. ( cf ` ( aleph ` suc A ) ) x C_ ( f ` y ) ) /\ ( A e. On /\ ( cf ` ( aleph ` suc A ) ) e. ( aleph ` suc A ) ) ) -> ( aleph ` suc A ) C_ U_ y e. ( cf ` ( aleph ` suc A ) ) suc ( f ` y ) ) | 
						
							| 29 |  | ssdomg |  |-  ( U_ y e. ( cf ` ( aleph ` suc A ) ) suc ( f ` y ) e. _V -> ( ( aleph ` suc A ) C_ U_ y e. ( cf ` ( aleph ` suc A ) ) suc ( f ` y ) -> ( aleph ` suc A ) ~<_ U_ y e. ( cf ` ( aleph ` suc A ) ) suc ( f ` y ) ) ) | 
						
							| 30 | 8 28 29 | mpsyl |  |-  ( ( ( f : ( cf ` ( aleph ` suc A ) ) -1-1-> ( aleph ` suc A ) /\ A. x e. ( aleph ` suc A ) E. y e. ( cf ` ( aleph ` suc A ) ) x C_ ( f ` y ) ) /\ ( A e. On /\ ( cf ` ( aleph ` suc A ) ) e. ( aleph ` suc A ) ) ) -> ( aleph ` suc A ) ~<_ U_ y e. ( cf ` ( aleph ` suc A ) ) suc ( f ` y ) ) | 
						
							| 31 |  | simprl |  |-  ( ( ( f : ( cf ` ( aleph ` suc A ) ) -1-1-> ( aleph ` suc A ) /\ A. x e. ( aleph ` suc A ) E. y e. ( cf ` ( aleph ` suc A ) ) x C_ ( f ` y ) ) /\ ( A e. On /\ ( cf ` ( aleph ` suc A ) ) e. ( aleph ` suc A ) ) ) -> A e. On ) | 
						
							| 32 |  | onsuc |  |-  ( A e. On -> suc A e. On ) | 
						
							| 33 |  | alephislim |  |-  ( suc A e. On <-> Lim ( aleph ` suc A ) ) | 
						
							| 34 |  | limsuc |  |-  ( Lim ( aleph ` suc A ) -> ( ( f ` y ) e. ( aleph ` suc A ) <-> suc ( f ` y ) e. ( aleph ` suc A ) ) ) | 
						
							| 35 | 33 34 | sylbi |  |-  ( suc A e. On -> ( ( f ` y ) e. ( aleph ` suc A ) <-> suc ( f ` y ) e. ( aleph ` suc A ) ) ) | 
						
							| 36 | 32 35 | syl |  |-  ( A e. On -> ( ( f ` y ) e. ( aleph ` suc A ) <-> suc ( f ` y ) e. ( aleph ` suc A ) ) ) | 
						
							| 37 |  | breq1 |  |-  ( z = suc ( f ` y ) -> ( z ~< ( aleph ` suc A ) <-> suc ( f ` y ) ~< ( aleph ` suc A ) ) ) | 
						
							| 38 |  | alephcard |  |-  ( card ` ( aleph ` suc A ) ) = ( aleph ` suc A ) | 
						
							| 39 |  | iscard |  |-  ( ( card ` ( aleph ` suc A ) ) = ( aleph ` suc A ) <-> ( ( aleph ` suc A ) e. On /\ A. z e. ( aleph ` suc A ) z ~< ( aleph ` suc A ) ) ) | 
						
							| 40 | 39 | simprbi |  |-  ( ( card ` ( aleph ` suc A ) ) = ( aleph ` suc A ) -> A. z e. ( aleph ` suc A ) z ~< ( aleph ` suc A ) ) | 
						
							| 41 | 38 40 | ax-mp |  |-  A. z e. ( aleph ` suc A ) z ~< ( aleph ` suc A ) | 
						
							| 42 | 37 41 | vtoclri |  |-  ( suc ( f ` y ) e. ( aleph ` suc A ) -> suc ( f ` y ) ~< ( aleph ` suc A ) ) | 
						
							| 43 |  | alephsucdom |  |-  ( A e. On -> ( suc ( f ` y ) ~<_ ( aleph ` A ) <-> suc ( f ` y ) ~< ( aleph ` suc A ) ) ) | 
						
							| 44 | 42 43 | imbitrrid |  |-  ( A e. On -> ( suc ( f ` y ) e. ( aleph ` suc A ) -> suc ( f ` y ) ~<_ ( aleph ` A ) ) ) | 
						
							| 45 | 36 44 | sylbid |  |-  ( A e. On -> ( ( f ` y ) e. ( aleph ` suc A ) -> suc ( f ` y ) ~<_ ( aleph ` A ) ) ) | 
						
							| 46 | 13 45 | syl5 |  |-  ( A e. On -> ( ( f : ( cf ` ( aleph ` suc A ) ) --> ( aleph ` suc A ) /\ y e. ( cf ` ( aleph ` suc A ) ) ) -> suc ( f ` y ) ~<_ ( aleph ` A ) ) ) | 
						
							| 47 | 46 | expdimp |  |-  ( ( A e. On /\ f : ( cf ` ( aleph ` suc A ) ) --> ( aleph ` suc A ) ) -> ( y e. ( cf ` ( aleph ` suc A ) ) -> suc ( f ` y ) ~<_ ( aleph ` A ) ) ) | 
						
							| 48 | 47 | ralrimiv |  |-  ( ( A e. On /\ f : ( cf ` ( aleph ` suc A ) ) --> ( aleph ` suc A ) ) -> A. y e. ( cf ` ( aleph ` suc A ) ) suc ( f ` y ) ~<_ ( aleph ` A ) ) | 
						
							| 49 |  | iundom |  |-  ( ( ( cf ` ( aleph ` suc A ) ) e. _V /\ A. y e. ( cf ` ( aleph ` suc A ) ) suc ( f ` y ) ~<_ ( aleph ` A ) ) -> U_ y e. ( cf ` ( aleph ` suc A ) ) suc ( f ` y ) ~<_ ( ( cf ` ( aleph ` suc A ) ) X. ( aleph ` A ) ) ) | 
						
							| 50 | 5 48 49 | sylancr |  |-  ( ( A e. On /\ f : ( cf ` ( aleph ` suc A ) ) --> ( aleph ` suc A ) ) -> U_ y e. ( cf ` ( aleph ` suc A ) ) suc ( f ` y ) ~<_ ( ( cf ` ( aleph ` suc A ) ) X. ( aleph ` A ) ) ) | 
						
							| 51 | 31 10 50 | syl2anc |  |-  ( ( ( f : ( cf ` ( aleph ` suc A ) ) -1-1-> ( aleph ` suc A ) /\ A. x e. ( aleph ` suc A ) E. y e. ( cf ` ( aleph ` suc A ) ) x C_ ( f ` y ) ) /\ ( A e. On /\ ( cf ` ( aleph ` suc A ) ) e. ( aleph ` suc A ) ) ) -> U_ y e. ( cf ` ( aleph ` suc A ) ) suc ( f ` y ) ~<_ ( ( cf ` ( aleph ` suc A ) ) X. ( aleph ` A ) ) ) | 
						
							| 52 |  | domtr |  |-  ( ( ( aleph ` suc A ) ~<_ U_ y e. ( cf ` ( aleph ` suc A ) ) suc ( f ` y ) /\ U_ y e. ( cf ` ( aleph ` suc A ) ) suc ( f ` y ) ~<_ ( ( cf ` ( aleph ` suc A ) ) X. ( aleph ` A ) ) ) -> ( aleph ` suc A ) ~<_ ( ( cf ` ( aleph ` suc A ) ) X. ( aleph ` A ) ) ) | 
						
							| 53 | 30 51 52 | syl2anc |  |-  ( ( ( f : ( cf ` ( aleph ` suc A ) ) -1-1-> ( aleph ` suc A ) /\ A. x e. ( aleph ` suc A ) E. y e. ( cf ` ( aleph ` suc A ) ) x C_ ( f ` y ) ) /\ ( A e. On /\ ( cf ` ( aleph ` suc A ) ) e. ( aleph ` suc A ) ) ) -> ( aleph ` suc A ) ~<_ ( ( cf ` ( aleph ` suc A ) ) X. ( aleph ` A ) ) ) | 
						
							| 54 | 53 | expcom |  |-  ( ( A e. On /\ ( cf ` ( aleph ` suc A ) ) e. ( aleph ` suc A ) ) -> ( ( f : ( cf ` ( aleph ` suc A ) ) -1-1-> ( aleph ` suc A ) /\ A. x e. ( aleph ` suc A ) E. y e. ( cf ` ( aleph ` suc A ) ) x C_ ( f ` y ) ) -> ( aleph ` suc A ) ~<_ ( ( cf ` ( aleph ` suc A ) ) X. ( aleph ` A ) ) ) ) | 
						
							| 55 | 54 | exlimdv |  |-  ( ( A e. On /\ ( cf ` ( aleph ` suc A ) ) e. ( aleph ` suc A ) ) -> ( E. f ( f : ( cf ` ( aleph ` suc A ) ) -1-1-> ( aleph ` suc A ) /\ A. x e. ( aleph ` suc A ) E. y e. ( cf ` ( aleph ` suc A ) ) x C_ ( f ` y ) ) -> ( aleph ` suc A ) ~<_ ( ( cf ` ( aleph ` suc A ) ) X. ( aleph ` A ) ) ) ) | 
						
							| 56 | 4 55 | mpi |  |-  ( ( A e. On /\ ( cf ` ( aleph ` suc A ) ) e. ( aleph ` suc A ) ) -> ( aleph ` suc A ) ~<_ ( ( cf ` ( aleph ` suc A ) ) X. ( aleph ` A ) ) ) | 
						
							| 57 |  | alephgeom |  |-  ( A e. On <-> _om C_ ( aleph ` A ) ) | 
						
							| 58 |  | alephon |  |-  ( aleph ` A ) e. On | 
						
							| 59 |  | infxpen |  |-  ( ( ( aleph ` A ) e. On /\ _om C_ ( aleph ` A ) ) -> ( ( aleph ` A ) X. ( aleph ` A ) ) ~~ ( aleph ` A ) ) | 
						
							| 60 | 58 59 | mpan |  |-  ( _om C_ ( aleph ` A ) -> ( ( aleph ` A ) X. ( aleph ` A ) ) ~~ ( aleph ` A ) ) | 
						
							| 61 | 57 60 | sylbi |  |-  ( A e. On -> ( ( aleph ` A ) X. ( aleph ` A ) ) ~~ ( aleph ` A ) ) | 
						
							| 62 |  | breq1 |  |-  ( z = ( cf ` ( aleph ` suc A ) ) -> ( z ~< ( aleph ` suc A ) <-> ( cf ` ( aleph ` suc A ) ) ~< ( aleph ` suc A ) ) ) | 
						
							| 63 | 62 41 | vtoclri |  |-  ( ( cf ` ( aleph ` suc A ) ) e. ( aleph ` suc A ) -> ( cf ` ( aleph ` suc A ) ) ~< ( aleph ` suc A ) ) | 
						
							| 64 |  | alephsucdom |  |-  ( A e. On -> ( ( cf ` ( aleph ` suc A ) ) ~<_ ( aleph ` A ) <-> ( cf ` ( aleph ` suc A ) ) ~< ( aleph ` suc A ) ) ) | 
						
							| 65 | 63 64 | imbitrrid |  |-  ( A e. On -> ( ( cf ` ( aleph ` suc A ) ) e. ( aleph ` suc A ) -> ( cf ` ( aleph ` suc A ) ) ~<_ ( aleph ` A ) ) ) | 
						
							| 66 |  | fvex |  |-  ( aleph ` A ) e. _V | 
						
							| 67 | 66 | xpdom1 |  |-  ( ( cf ` ( aleph ` suc A ) ) ~<_ ( aleph ` A ) -> ( ( cf ` ( aleph ` suc A ) ) X. ( aleph ` A ) ) ~<_ ( ( aleph ` A ) X. ( aleph ` A ) ) ) | 
						
							| 68 | 65 67 | syl6 |  |-  ( A e. On -> ( ( cf ` ( aleph ` suc A ) ) e. ( aleph ` suc A ) -> ( ( cf ` ( aleph ` suc A ) ) X. ( aleph ` A ) ) ~<_ ( ( aleph ` A ) X. ( aleph ` A ) ) ) ) | 
						
							| 69 |  | domentr |  |-  ( ( ( ( cf ` ( aleph ` suc A ) ) X. ( aleph ` A ) ) ~<_ ( ( aleph ` A ) X. ( aleph ` A ) ) /\ ( ( aleph ` A ) X. ( aleph ` A ) ) ~~ ( aleph ` A ) ) -> ( ( cf ` ( aleph ` suc A ) ) X. ( aleph ` A ) ) ~<_ ( aleph ` A ) ) | 
						
							| 70 | 69 | expcom |  |-  ( ( ( aleph ` A ) X. ( aleph ` A ) ) ~~ ( aleph ` A ) -> ( ( ( cf ` ( aleph ` suc A ) ) X. ( aleph ` A ) ) ~<_ ( ( aleph ` A ) X. ( aleph ` A ) ) -> ( ( cf ` ( aleph ` suc A ) ) X. ( aleph ` A ) ) ~<_ ( aleph ` A ) ) ) | 
						
							| 71 | 61 68 70 | sylsyld |  |-  ( A e. On -> ( ( cf ` ( aleph ` suc A ) ) e. ( aleph ` suc A ) -> ( ( cf ` ( aleph ` suc A ) ) X. ( aleph ` A ) ) ~<_ ( aleph ` A ) ) ) | 
						
							| 72 | 71 | imp |  |-  ( ( A e. On /\ ( cf ` ( aleph ` suc A ) ) e. ( aleph ` suc A ) ) -> ( ( cf ` ( aleph ` suc A ) ) X. ( aleph ` A ) ) ~<_ ( aleph ` A ) ) | 
						
							| 73 |  | domtr |  |-  ( ( ( aleph ` suc A ) ~<_ ( ( cf ` ( aleph ` suc A ) ) X. ( aleph ` A ) ) /\ ( ( cf ` ( aleph ` suc A ) ) X. ( aleph ` A ) ) ~<_ ( aleph ` A ) ) -> ( aleph ` suc A ) ~<_ ( aleph ` A ) ) | 
						
							| 74 | 56 72 73 | syl2anc |  |-  ( ( A e. On /\ ( cf ` ( aleph ` suc A ) ) e. ( aleph ` suc A ) ) -> ( aleph ` suc A ) ~<_ ( aleph ` A ) ) | 
						
							| 75 |  | domnsym |  |-  ( ( aleph ` suc A ) ~<_ ( aleph ` A ) -> -. ( aleph ` A ) ~< ( aleph ` suc A ) ) | 
						
							| 76 | 74 75 | syl |  |-  ( ( A e. On /\ ( cf ` ( aleph ` suc A ) ) e. ( aleph ` suc A ) ) -> -. ( aleph ` A ) ~< ( aleph ` suc A ) ) | 
						
							| 77 | 76 | ex |  |-  ( A e. On -> ( ( cf ` ( aleph ` suc A ) ) e. ( aleph ` suc A ) -> -. ( aleph ` A ) ~< ( aleph ` suc A ) ) ) | 
						
							| 78 | 1 77 | mt2d |  |-  ( A e. On -> -. ( cf ` ( aleph ` suc A ) ) e. ( aleph ` suc A ) ) | 
						
							| 79 |  | cfon |  |-  ( cf ` ( aleph ` suc A ) ) e. On | 
						
							| 80 |  | cfle |  |-  ( cf ` ( aleph ` suc A ) ) C_ ( aleph ` suc A ) | 
						
							| 81 |  | onsseleq |  |-  ( ( ( cf ` ( aleph ` suc A ) ) e. On /\ ( aleph ` suc A ) e. On ) -> ( ( cf ` ( aleph ` suc A ) ) C_ ( aleph ` suc A ) <-> ( ( cf ` ( aleph ` suc A ) ) e. ( aleph ` suc A ) \/ ( cf ` ( aleph ` suc A ) ) = ( aleph ` suc A ) ) ) ) | 
						
							| 82 | 80 81 | mpbii |  |-  ( ( ( cf ` ( aleph ` suc A ) ) e. On /\ ( aleph ` suc A ) e. On ) -> ( ( cf ` ( aleph ` suc A ) ) e. ( aleph ` suc A ) \/ ( cf ` ( aleph ` suc A ) ) = ( aleph ` suc A ) ) ) | 
						
							| 83 | 79 2 82 | mp2an |  |-  ( ( cf ` ( aleph ` suc A ) ) e. ( aleph ` suc A ) \/ ( cf ` ( aleph ` suc A ) ) = ( aleph ` suc A ) ) | 
						
							| 84 | 83 | ori |  |-  ( -. ( cf ` ( aleph ` suc A ) ) e. ( aleph ` suc A ) -> ( cf ` ( aleph ` suc A ) ) = ( aleph ` suc A ) ) | 
						
							| 85 | 78 84 | syl |  |-  ( A e. On -> ( cf ` ( aleph ` suc A ) ) = ( aleph ` suc A ) ) | 
						
							| 86 |  | cf0 |  |-  ( cf ` (/) ) = (/) | 
						
							| 87 |  | alephfnon |  |-  aleph Fn On | 
						
							| 88 | 87 | fndmi |  |-  dom aleph = On | 
						
							| 89 | 88 | eleq2i |  |-  ( suc A e. dom aleph <-> suc A e. On ) | 
						
							| 90 |  | onsucb |  |-  ( A e. On <-> suc A e. On ) | 
						
							| 91 | 89 90 | bitr4i |  |-  ( suc A e. dom aleph <-> A e. On ) | 
						
							| 92 |  | ndmfv |  |-  ( -. suc A e. dom aleph -> ( aleph ` suc A ) = (/) ) | 
						
							| 93 | 91 92 | sylnbir |  |-  ( -. A e. On -> ( aleph ` suc A ) = (/) ) | 
						
							| 94 | 93 | fveq2d |  |-  ( -. A e. On -> ( cf ` ( aleph ` suc A ) ) = ( cf ` (/) ) ) | 
						
							| 95 | 86 94 93 | 3eqtr4a |  |-  ( -. A e. On -> ( cf ` ( aleph ` suc A ) ) = ( aleph ` suc A ) ) | 
						
							| 96 | 85 95 | pm2.61i |  |-  ( cf ` ( aleph ` suc A ) ) = ( aleph ` suc A ) |