| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
|- ( ( A e. On /\ B e. On ) -> A e. On ) |
| 2 |
|
alephon |
|- ( aleph ` B ) e. On |
| 3 |
|
onenon |
|- ( ( aleph ` B ) e. On -> ( aleph ` B ) e. dom card ) |
| 4 |
2 3
|
ax-mp |
|- ( aleph ` B ) e. dom card |
| 5 |
|
cardsdomel |
|- ( ( A e. On /\ ( aleph ` B ) e. dom card ) -> ( A ~< ( aleph ` B ) <-> A e. ( card ` ( aleph ` B ) ) ) ) |
| 6 |
1 4 5
|
sylancl |
|- ( ( A e. On /\ B e. On ) -> ( A ~< ( aleph ` B ) <-> A e. ( card ` ( aleph ` B ) ) ) ) |
| 7 |
|
alephcard |
|- ( card ` ( aleph ` B ) ) = ( aleph ` B ) |
| 8 |
7
|
eleq2i |
|- ( A e. ( card ` ( aleph ` B ) ) <-> A e. ( aleph ` B ) ) |
| 9 |
6 8
|
bitr2di |
|- ( ( A e. On /\ B e. On ) -> ( A e. ( aleph ` B ) <-> A ~< ( aleph ` B ) ) ) |