| Step | Hyp | Ref | Expression | 
						
							| 1 |  | alephfnon |  |-  aleph Fn On | 
						
							| 2 |  | fnfun |  |-  ( aleph Fn On -> Fun aleph ) | 
						
							| 3 | 1 2 | ax-mp |  |-  Fun aleph | 
						
							| 4 |  | simpl |  |-  ( ( A e. _V /\ Lim A ) -> A e. _V ) | 
						
							| 5 |  | resfunexg |  |-  ( ( Fun aleph /\ A e. _V ) -> ( aleph |` A ) e. _V ) | 
						
							| 6 | 3 4 5 | sylancr |  |-  ( ( A e. _V /\ Lim A ) -> ( aleph |` A ) e. _V ) | 
						
							| 7 |  | limelon |  |-  ( ( A e. _V /\ Lim A ) -> A e. On ) | 
						
							| 8 |  | onss |  |-  ( A e. On -> A C_ On ) | 
						
							| 9 | 7 8 | syl |  |-  ( ( A e. _V /\ Lim A ) -> A C_ On ) | 
						
							| 10 |  | fnssres |  |-  ( ( aleph Fn On /\ A C_ On ) -> ( aleph |` A ) Fn A ) | 
						
							| 11 | 1 9 10 | sylancr |  |-  ( ( A e. _V /\ Lim A ) -> ( aleph |` A ) Fn A ) | 
						
							| 12 |  | fvres |  |-  ( y e. A -> ( ( aleph |` A ) ` y ) = ( aleph ` y ) ) | 
						
							| 13 | 12 | adantl |  |-  ( ( A e. On /\ y e. A ) -> ( ( aleph |` A ) ` y ) = ( aleph ` y ) ) | 
						
							| 14 |  | alephord2i |  |-  ( A e. On -> ( y e. A -> ( aleph ` y ) e. ( aleph ` A ) ) ) | 
						
							| 15 | 14 | imp |  |-  ( ( A e. On /\ y e. A ) -> ( aleph ` y ) e. ( aleph ` A ) ) | 
						
							| 16 | 13 15 | eqeltrd |  |-  ( ( A e. On /\ y e. A ) -> ( ( aleph |` A ) ` y ) e. ( aleph ` A ) ) | 
						
							| 17 | 7 16 | sylan |  |-  ( ( ( A e. _V /\ Lim A ) /\ y e. A ) -> ( ( aleph |` A ) ` y ) e. ( aleph ` A ) ) | 
						
							| 18 | 17 | ralrimiva |  |-  ( ( A e. _V /\ Lim A ) -> A. y e. A ( ( aleph |` A ) ` y ) e. ( aleph ` A ) ) | 
						
							| 19 |  | fnfvrnss |  |-  ( ( ( aleph |` A ) Fn A /\ A. y e. A ( ( aleph |` A ) ` y ) e. ( aleph ` A ) ) -> ran ( aleph |` A ) C_ ( aleph ` A ) ) | 
						
							| 20 | 11 18 19 | syl2anc |  |-  ( ( A e. _V /\ Lim A ) -> ran ( aleph |` A ) C_ ( aleph ` A ) ) | 
						
							| 21 |  | df-f |  |-  ( ( aleph |` A ) : A --> ( aleph ` A ) <-> ( ( aleph |` A ) Fn A /\ ran ( aleph |` A ) C_ ( aleph ` A ) ) ) | 
						
							| 22 | 11 20 21 | sylanbrc |  |-  ( ( A e. _V /\ Lim A ) -> ( aleph |` A ) : A --> ( aleph ` A ) ) | 
						
							| 23 |  | alephsmo |  |-  Smo aleph | 
						
							| 24 | 1 | fndmi |  |-  dom aleph = On | 
						
							| 25 | 7 24 | eleqtrrdi |  |-  ( ( A e. _V /\ Lim A ) -> A e. dom aleph ) | 
						
							| 26 |  | smores |  |-  ( ( Smo aleph /\ A e. dom aleph ) -> Smo ( aleph |` A ) ) | 
						
							| 27 | 23 25 26 | sylancr |  |-  ( ( A e. _V /\ Lim A ) -> Smo ( aleph |` A ) ) | 
						
							| 28 |  | alephlim |  |-  ( ( A e. _V /\ Lim A ) -> ( aleph ` A ) = U_ y e. A ( aleph ` y ) ) | 
						
							| 29 | 28 | eleq2d |  |-  ( ( A e. _V /\ Lim A ) -> ( x e. ( aleph ` A ) <-> x e. U_ y e. A ( aleph ` y ) ) ) | 
						
							| 30 |  | eliun |  |-  ( x e. U_ y e. A ( aleph ` y ) <-> E. y e. A x e. ( aleph ` y ) ) | 
						
							| 31 |  | alephon |  |-  ( aleph ` y ) e. On | 
						
							| 32 | 31 | onelssi |  |-  ( x e. ( aleph ` y ) -> x C_ ( aleph ` y ) ) | 
						
							| 33 | 32 | reximi |  |-  ( E. y e. A x e. ( aleph ` y ) -> E. y e. A x C_ ( aleph ` y ) ) | 
						
							| 34 | 30 33 | sylbi |  |-  ( x e. U_ y e. A ( aleph ` y ) -> E. y e. A x C_ ( aleph ` y ) ) | 
						
							| 35 | 29 34 | biimtrdi |  |-  ( ( A e. _V /\ Lim A ) -> ( x e. ( aleph ` A ) -> E. y e. A x C_ ( aleph ` y ) ) ) | 
						
							| 36 | 35 | ralrimiv |  |-  ( ( A e. _V /\ Lim A ) -> A. x e. ( aleph ` A ) E. y e. A x C_ ( aleph ` y ) ) | 
						
							| 37 |  | feq1 |  |-  ( f = ( aleph |` A ) -> ( f : A --> ( aleph ` A ) <-> ( aleph |` A ) : A --> ( aleph ` A ) ) ) | 
						
							| 38 |  | smoeq |  |-  ( f = ( aleph |` A ) -> ( Smo f <-> Smo ( aleph |` A ) ) ) | 
						
							| 39 |  | fveq1 |  |-  ( f = ( aleph |` A ) -> ( f ` y ) = ( ( aleph |` A ) ` y ) ) | 
						
							| 40 | 39 12 | sylan9eq |  |-  ( ( f = ( aleph |` A ) /\ y e. A ) -> ( f ` y ) = ( aleph ` y ) ) | 
						
							| 41 | 40 | sseq2d |  |-  ( ( f = ( aleph |` A ) /\ y e. A ) -> ( x C_ ( f ` y ) <-> x C_ ( aleph ` y ) ) ) | 
						
							| 42 | 41 | rexbidva |  |-  ( f = ( aleph |` A ) -> ( E. y e. A x C_ ( f ` y ) <-> E. y e. A x C_ ( aleph ` y ) ) ) | 
						
							| 43 | 42 | ralbidv |  |-  ( f = ( aleph |` A ) -> ( A. x e. ( aleph ` A ) E. y e. A x C_ ( f ` y ) <-> A. x e. ( aleph ` A ) E. y e. A x C_ ( aleph ` y ) ) ) | 
						
							| 44 | 37 38 43 | 3anbi123d |  |-  ( f = ( aleph |` A ) -> ( ( f : A --> ( aleph ` A ) /\ Smo f /\ A. x e. ( aleph ` A ) E. y e. A x C_ ( f ` y ) ) <-> ( ( aleph |` A ) : A --> ( aleph ` A ) /\ Smo ( aleph |` A ) /\ A. x e. ( aleph ` A ) E. y e. A x C_ ( aleph ` y ) ) ) ) | 
						
							| 45 | 44 | spcegv |  |-  ( ( aleph |` A ) e. _V -> ( ( ( aleph |` A ) : A --> ( aleph ` A ) /\ Smo ( aleph |` A ) /\ A. x e. ( aleph ` A ) E. y e. A x C_ ( aleph ` y ) ) -> E. f ( f : A --> ( aleph ` A ) /\ Smo f /\ A. x e. ( aleph ` A ) E. y e. A x C_ ( f ` y ) ) ) ) | 
						
							| 46 | 45 | imp |  |-  ( ( ( aleph |` A ) e. _V /\ ( ( aleph |` A ) : A --> ( aleph ` A ) /\ Smo ( aleph |` A ) /\ A. x e. ( aleph ` A ) E. y e. A x C_ ( aleph ` y ) ) ) -> E. f ( f : A --> ( aleph ` A ) /\ Smo f /\ A. x e. ( aleph ` A ) E. y e. A x C_ ( f ` y ) ) ) | 
						
							| 47 | 6 22 27 36 46 | syl13anc |  |-  ( ( A e. _V /\ Lim A ) -> E. f ( f : A --> ( aleph ` A ) /\ Smo f /\ A. x e. ( aleph ` A ) E. y e. A x C_ ( f ` y ) ) ) | 
						
							| 48 |  | alephon |  |-  ( aleph ` A ) e. On | 
						
							| 49 |  | cfcof |  |-  ( ( ( aleph ` A ) e. On /\ A e. On ) -> ( E. f ( f : A --> ( aleph ` A ) /\ Smo f /\ A. x e. ( aleph ` A ) E. y e. A x C_ ( f ` y ) ) -> ( cf ` ( aleph ` A ) ) = ( cf ` A ) ) ) | 
						
							| 50 | 48 7 49 | sylancr |  |-  ( ( A e. _V /\ Lim A ) -> ( E. f ( f : A --> ( aleph ` A ) /\ Smo f /\ A. x e. ( aleph ` A ) E. y e. A x C_ ( f ` y ) ) -> ( cf ` ( aleph ` A ) ) = ( cf ` A ) ) ) | 
						
							| 51 | 47 50 | mpd |  |-  ( ( A e. _V /\ Lim A ) -> ( cf ` ( aleph ` A ) ) = ( cf ` A ) ) | 
						
							| 52 | 51 | expcom |  |-  ( Lim A -> ( A e. _V -> ( cf ` ( aleph ` A ) ) = ( cf ` A ) ) ) | 
						
							| 53 |  | cf0 |  |-  ( cf ` (/) ) = (/) | 
						
							| 54 |  | fvprc |  |-  ( -. A e. _V -> ( aleph ` A ) = (/) ) | 
						
							| 55 | 54 | fveq2d |  |-  ( -. A e. _V -> ( cf ` ( aleph ` A ) ) = ( cf ` (/) ) ) | 
						
							| 56 |  | fvprc |  |-  ( -. A e. _V -> ( cf ` A ) = (/) ) | 
						
							| 57 | 53 55 56 | 3eqtr4a |  |-  ( -. A e. _V -> ( cf ` ( aleph ` A ) ) = ( cf ` A ) ) | 
						
							| 58 | 52 57 | pm2.61d1 |  |-  ( Lim A -> ( cf ` ( aleph ` A ) ) = ( cf ` A ) ) |