| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssid |
|- On C_ On |
| 2 |
|
ordon |
|- Ord On |
| 3 |
|
alephord2i |
|- ( x e. On -> ( y e. x -> ( aleph ` y ) e. ( aleph ` x ) ) ) |
| 4 |
3
|
ralrimiv |
|- ( x e. On -> A. y e. x ( aleph ` y ) e. ( aleph ` x ) ) |
| 5 |
4
|
rgen |
|- A. x e. On A. y e. x ( aleph ` y ) e. ( aleph ` x ) |
| 6 |
|
alephfnon |
|- aleph Fn On |
| 7 |
|
alephsson |
|- ran aleph C_ On |
| 8 |
|
df-f |
|- ( aleph : On --> On <-> ( aleph Fn On /\ ran aleph C_ On ) ) |
| 9 |
6 7 8
|
mpbir2an |
|- aleph : On --> On |
| 10 |
|
issmo2 |
|- ( aleph : On --> On -> ( ( On C_ On /\ Ord On /\ A. x e. On A. y e. x ( aleph ` y ) e. ( aleph ` x ) ) -> Smo aleph ) ) |
| 11 |
9 10
|
ax-mp |
|- ( ( On C_ On /\ Ord On /\ A. x e. On A. y e. x ( aleph ` y ) e. ( aleph ` x ) ) -> Smo aleph ) |
| 12 |
1 2 5 11
|
mp3an |
|- Smo aleph |