Metamath Proof Explorer


Theorem alephsuc

Description: Value of the aleph function at a successor ordinal. Definition 12(ii) of Suppes p. 91. Here we express the successor aleph in terms of the Hartogs function df-har , which gives the smallest ordinal that strictly dominates its argument (or the supremum of all ordinals that are dominated by the argument). (Contributed by Mario Carneiro, 13-Sep-2013) (Revised by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion alephsuc
|- ( A e. On -> ( aleph ` suc A ) = ( har ` ( aleph ` A ) ) )

Proof

Step Hyp Ref Expression
1 rdgsuc
 |-  ( A e. On -> ( rec ( har , _om ) ` suc A ) = ( har ` ( rec ( har , _om ) ` A ) ) )
2 df-aleph
 |-  aleph = rec ( har , _om )
3 2 fveq1i
 |-  ( aleph ` suc A ) = ( rec ( har , _om ) ` suc A )
4 2 fveq1i
 |-  ( aleph ` A ) = ( rec ( har , _om ) ` A )
5 4 fveq2i
 |-  ( har ` ( aleph ` A ) ) = ( har ` ( rec ( har , _om ) ` A ) )
6 1 3 5 3eqtr4g
 |-  ( A e. On -> ( aleph ` suc A ) = ( har ` ( aleph ` A ) ) )