Step |
Hyp |
Ref |
Expression |
1 |
|
alephsuc2 |
|- ( A e. On -> ( aleph ` suc A ) = { x e. On | x ~<_ ( aleph ` A ) } ) |
2 |
|
alephcard |
|- ( card ` ( aleph ` A ) ) = ( aleph ` A ) |
3 |
|
alephon |
|- ( aleph ` A ) e. On |
4 |
|
onenon |
|- ( ( aleph ` A ) e. On -> ( aleph ` A ) e. dom card ) |
5 |
3 4
|
ax-mp |
|- ( aleph ` A ) e. dom card |
6 |
|
cardval2 |
|- ( ( aleph ` A ) e. dom card -> ( card ` ( aleph ` A ) ) = { x e. On | x ~< ( aleph ` A ) } ) |
7 |
5 6
|
ax-mp |
|- ( card ` ( aleph ` A ) ) = { x e. On | x ~< ( aleph ` A ) } |
8 |
2 7
|
eqtr3i |
|- ( aleph ` A ) = { x e. On | x ~< ( aleph ` A ) } |
9 |
8
|
a1i |
|- ( A e. On -> ( aleph ` A ) = { x e. On | x ~< ( aleph ` A ) } ) |
10 |
1 9
|
difeq12d |
|- ( A e. On -> ( ( aleph ` suc A ) \ ( aleph ` A ) ) = ( { x e. On | x ~<_ ( aleph ` A ) } \ { x e. On | x ~< ( aleph ` A ) } ) ) |
11 |
|
difrab |
|- ( { x e. On | x ~<_ ( aleph ` A ) } \ { x e. On | x ~< ( aleph ` A ) } ) = { x e. On | ( x ~<_ ( aleph ` A ) /\ -. x ~< ( aleph ` A ) ) } |
12 |
|
bren2 |
|- ( x ~~ ( aleph ` A ) <-> ( x ~<_ ( aleph ` A ) /\ -. x ~< ( aleph ` A ) ) ) |
13 |
12
|
rabbii |
|- { x e. On | x ~~ ( aleph ` A ) } = { x e. On | ( x ~<_ ( aleph ` A ) /\ -. x ~< ( aleph ` A ) ) } |
14 |
11 13
|
eqtr4i |
|- ( { x e. On | x ~<_ ( aleph ` A ) } \ { x e. On | x ~< ( aleph ` A ) } ) = { x e. On | x ~~ ( aleph ` A ) } |
15 |
10 14
|
eqtr2di |
|- ( A e. On -> { x e. On | x ~~ ( aleph ` A ) } = ( ( aleph ` suc A ) \ ( aleph ` A ) ) ) |
16 |
|
alephon |
|- ( aleph ` suc A ) e. On |
17 |
|
onenon |
|- ( ( aleph ` suc A ) e. On -> ( aleph ` suc A ) e. dom card ) |
18 |
16 17
|
mp1i |
|- ( A e. On -> ( aleph ` suc A ) e. dom card ) |
19 |
|
sucelon |
|- ( A e. On <-> suc A e. On ) |
20 |
|
alephgeom |
|- ( suc A e. On <-> _om C_ ( aleph ` suc A ) ) |
21 |
19 20
|
bitri |
|- ( A e. On <-> _om C_ ( aleph ` suc A ) ) |
22 |
|
fvex |
|- ( aleph ` suc A ) e. _V |
23 |
|
ssdomg |
|- ( ( aleph ` suc A ) e. _V -> ( _om C_ ( aleph ` suc A ) -> _om ~<_ ( aleph ` suc A ) ) ) |
24 |
22 23
|
ax-mp |
|- ( _om C_ ( aleph ` suc A ) -> _om ~<_ ( aleph ` suc A ) ) |
25 |
21 24
|
sylbi |
|- ( A e. On -> _om ~<_ ( aleph ` suc A ) ) |
26 |
|
alephordilem1 |
|- ( A e. On -> ( aleph ` A ) ~< ( aleph ` suc A ) ) |
27 |
|
infdif |
|- ( ( ( aleph ` suc A ) e. dom card /\ _om ~<_ ( aleph ` suc A ) /\ ( aleph ` A ) ~< ( aleph ` suc A ) ) -> ( ( aleph ` suc A ) \ ( aleph ` A ) ) ~~ ( aleph ` suc A ) ) |
28 |
18 25 26 27
|
syl3anc |
|- ( A e. On -> ( ( aleph ` suc A ) \ ( aleph ` A ) ) ~~ ( aleph ` suc A ) ) |
29 |
15 28
|
eqbrtrd |
|- ( A e. On -> { x e. On | x ~~ ( aleph ` A ) } ~~ ( aleph ` suc A ) ) |
30 |
29
|
ensymd |
|- ( A e. On -> ( aleph ` suc A ) ~~ { x e. On | x ~~ ( aleph ` A ) } ) |