Step |
Hyp |
Ref |
Expression |
1 |
|
alephordilem1 |
|- ( B e. On -> ( aleph ` B ) ~< ( aleph ` suc B ) ) |
2 |
|
domsdomtr |
|- ( ( A ~<_ ( aleph ` B ) /\ ( aleph ` B ) ~< ( aleph ` suc B ) ) -> A ~< ( aleph ` suc B ) ) |
3 |
2
|
ex |
|- ( A ~<_ ( aleph ` B ) -> ( ( aleph ` B ) ~< ( aleph ` suc B ) -> A ~< ( aleph ` suc B ) ) ) |
4 |
1 3
|
syl5com |
|- ( B e. On -> ( A ~<_ ( aleph ` B ) -> A ~< ( aleph ` suc B ) ) ) |
5 |
|
sdomdom |
|- ( A ~< ( aleph ` suc B ) -> A ~<_ ( aleph ` suc B ) ) |
6 |
|
alephon |
|- ( aleph ` suc B ) e. On |
7 |
|
ondomen |
|- ( ( ( aleph ` suc B ) e. On /\ A ~<_ ( aleph ` suc B ) ) -> A e. dom card ) |
8 |
6 7
|
mpan |
|- ( A ~<_ ( aleph ` suc B ) -> A e. dom card ) |
9 |
|
cardid2 |
|- ( A e. dom card -> ( card ` A ) ~~ A ) |
10 |
5 8 9
|
3syl |
|- ( A ~< ( aleph ` suc B ) -> ( card ` A ) ~~ A ) |
11 |
10
|
ensymd |
|- ( A ~< ( aleph ` suc B ) -> A ~~ ( card ` A ) ) |
12 |
|
alephnbtwn2 |
|- -. ( ( aleph ` B ) ~< ( card ` A ) /\ ( card ` A ) ~< ( aleph ` suc B ) ) |
13 |
12
|
imnani |
|- ( ( aleph ` B ) ~< ( card ` A ) -> -. ( card ` A ) ~< ( aleph ` suc B ) ) |
14 |
|
ensdomtr |
|- ( ( ( card ` A ) ~~ A /\ A ~< ( aleph ` suc B ) ) -> ( card ` A ) ~< ( aleph ` suc B ) ) |
15 |
10 14
|
mpancom |
|- ( A ~< ( aleph ` suc B ) -> ( card ` A ) ~< ( aleph ` suc B ) ) |
16 |
13 15
|
nsyl3 |
|- ( A ~< ( aleph ` suc B ) -> -. ( aleph ` B ) ~< ( card ` A ) ) |
17 |
|
cardon |
|- ( card ` A ) e. On |
18 |
|
alephon |
|- ( aleph ` B ) e. On |
19 |
|
domtriord |
|- ( ( ( card ` A ) e. On /\ ( aleph ` B ) e. On ) -> ( ( card ` A ) ~<_ ( aleph ` B ) <-> -. ( aleph ` B ) ~< ( card ` A ) ) ) |
20 |
17 18 19
|
mp2an |
|- ( ( card ` A ) ~<_ ( aleph ` B ) <-> -. ( aleph ` B ) ~< ( card ` A ) ) |
21 |
16 20
|
sylibr |
|- ( A ~< ( aleph ` suc B ) -> ( card ` A ) ~<_ ( aleph ` B ) ) |
22 |
|
endomtr |
|- ( ( A ~~ ( card ` A ) /\ ( card ` A ) ~<_ ( aleph ` B ) ) -> A ~<_ ( aleph ` B ) ) |
23 |
11 21 22
|
syl2anc |
|- ( A ~< ( aleph ` suc B ) -> A ~<_ ( aleph ` B ) ) |
24 |
4 23
|
impbid1 |
|- ( B e. On -> ( A ~<_ ( aleph ` B ) <-> A ~< ( aleph ` suc B ) ) ) |