Description: The power set of an aleph dominates the successor aleph. (The Generalized Continuum Hypothesis says they are equinumerous, see gch3 or gchaleph2 .) (Contributed by NM, 27-Aug-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | alephsucpw | |- ( aleph ` suc A ) ~<_ ~P ( aleph ` A ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | alephsucpw2 | |- -. ~P ( aleph ` A ) ~< ( aleph ` suc A ) | |
| 2 | fvex | |- ( aleph ` suc A ) e. _V | |
| 3 | fvex | |- ( aleph ` A ) e. _V | |
| 4 | 3 | pwex | |- ~P ( aleph ` A ) e. _V | 
| 5 | domtri | |- ( ( ( aleph ` suc A ) e. _V /\ ~P ( aleph ` A ) e. _V ) -> ( ( aleph ` suc A ) ~<_ ~P ( aleph ` A ) <-> -. ~P ( aleph ` A ) ~< ( aleph ` suc A ) ) ) | |
| 6 | 2 4 5 | mp2an | |- ( ( aleph ` suc A ) ~<_ ~P ( aleph ` A ) <-> -. ~P ( aleph ` A ) ~< ( aleph ` suc A ) ) | 
| 7 | 1 6 | mpbir | |- ( aleph ` suc A ) ~<_ ~P ( aleph ` A ) |