Metamath Proof Explorer


Theorem alephsucpw

Description: The power set of an aleph dominates the successor aleph. (The Generalized Continuum Hypothesis says they are equinumerous, see gch3 or gchaleph2 .) (Contributed by NM, 27-Aug-2005)

Ref Expression
Assertion alephsucpw
|- ( aleph ` suc A ) ~<_ ~P ( aleph ` A )

Proof

Step Hyp Ref Expression
1 alephsucpw2
 |-  -. ~P ( aleph ` A ) ~< ( aleph ` suc A )
2 fvex
 |-  ( aleph ` suc A ) e. _V
3 fvex
 |-  ( aleph ` A ) e. _V
4 3 pwex
 |-  ~P ( aleph ` A ) e. _V
5 domtri
 |-  ( ( ( aleph ` suc A ) e. _V /\ ~P ( aleph ` A ) e. _V ) -> ( ( aleph ` suc A ) ~<_ ~P ( aleph ` A ) <-> -. ~P ( aleph ` A ) ~< ( aleph ` suc A ) ) )
6 2 4 5 mp2an
 |-  ( ( aleph ` suc A ) ~<_ ~P ( aleph ` A ) <-> -. ~P ( aleph ` A ) ~< ( aleph ` suc A ) )
7 1 6 mpbir
 |-  ( aleph ` suc A ) ~<_ ~P ( aleph ` A )