Step |
Hyp |
Ref |
Expression |
1 |
|
alephordi |
|- ( A e. On -> ( y e. A -> ( aleph ` y ) ~< ( aleph ` A ) ) ) |
2 |
1
|
ralrimiv |
|- ( A e. On -> A. y e. A ( aleph ` y ) ~< ( aleph ` A ) ) |
3 |
|
alephon |
|- ( aleph ` A ) e. On |
4 |
2 3
|
jctil |
|- ( A e. On -> ( ( aleph ` A ) e. On /\ A. y e. A ( aleph ` y ) ~< ( aleph ` A ) ) ) |
5 |
|
breq2 |
|- ( x = ( aleph ` A ) -> ( ( aleph ` y ) ~< x <-> ( aleph ` y ) ~< ( aleph ` A ) ) ) |
6 |
5
|
ralbidv |
|- ( x = ( aleph ` A ) -> ( A. y e. A ( aleph ` y ) ~< x <-> A. y e. A ( aleph ` y ) ~< ( aleph ` A ) ) ) |
7 |
6
|
elrab |
|- ( ( aleph ` A ) e. { x e. On | A. y e. A ( aleph ` y ) ~< x } <-> ( ( aleph ` A ) e. On /\ A. y e. A ( aleph ` y ) ~< ( aleph ` A ) ) ) |
8 |
4 7
|
sylibr |
|- ( A e. On -> ( aleph ` A ) e. { x e. On | A. y e. A ( aleph ` y ) ~< x } ) |
9 |
|
cardsdomelir |
|- ( z e. ( card ` ( aleph ` A ) ) -> z ~< ( aleph ` A ) ) |
10 |
|
alephcard |
|- ( card ` ( aleph ` A ) ) = ( aleph ` A ) |
11 |
10
|
eqcomi |
|- ( aleph ` A ) = ( card ` ( aleph ` A ) ) |
12 |
9 11
|
eleq2s |
|- ( z e. ( aleph ` A ) -> z ~< ( aleph ` A ) ) |
13 |
|
omex |
|- _om e. _V |
14 |
|
vex |
|- z e. _V |
15 |
|
entri3 |
|- ( ( _om e. _V /\ z e. _V ) -> ( _om ~<_ z \/ z ~<_ _om ) ) |
16 |
13 14 15
|
mp2an |
|- ( _om ~<_ z \/ z ~<_ _om ) |
17 |
|
carddom |
|- ( ( _om e. _V /\ z e. _V ) -> ( ( card ` _om ) C_ ( card ` z ) <-> _om ~<_ z ) ) |
18 |
13 14 17
|
mp2an |
|- ( ( card ` _om ) C_ ( card ` z ) <-> _om ~<_ z ) |
19 |
|
cardom |
|- ( card ` _om ) = _om |
20 |
19
|
sseq1i |
|- ( ( card ` _om ) C_ ( card ` z ) <-> _om C_ ( card ` z ) ) |
21 |
18 20
|
bitr3i |
|- ( _om ~<_ z <-> _om C_ ( card ` z ) ) |
22 |
|
cardidm |
|- ( card ` ( card ` z ) ) = ( card ` z ) |
23 |
|
cardalephex |
|- ( _om C_ ( card ` z ) -> ( ( card ` ( card ` z ) ) = ( card ` z ) <-> E. x e. On ( card ` z ) = ( aleph ` x ) ) ) |
24 |
22 23
|
mpbii |
|- ( _om C_ ( card ` z ) -> E. x e. On ( card ` z ) = ( aleph ` x ) ) |
25 |
|
alephord |
|- ( ( x e. On /\ A e. On ) -> ( x e. A <-> ( aleph ` x ) ~< ( aleph ` A ) ) ) |
26 |
25
|
ancoms |
|- ( ( A e. On /\ x e. On ) -> ( x e. A <-> ( aleph ` x ) ~< ( aleph ` A ) ) ) |
27 |
|
breq1 |
|- ( ( card ` z ) = ( aleph ` x ) -> ( ( card ` z ) ~< ( aleph ` A ) <-> ( aleph ` x ) ~< ( aleph ` A ) ) ) |
28 |
14
|
cardid |
|- ( card ` z ) ~~ z |
29 |
|
sdomen1 |
|- ( ( card ` z ) ~~ z -> ( ( card ` z ) ~< ( aleph ` A ) <-> z ~< ( aleph ` A ) ) ) |
30 |
28 29
|
ax-mp |
|- ( ( card ` z ) ~< ( aleph ` A ) <-> z ~< ( aleph ` A ) ) |
31 |
27 30
|
bitr3di |
|- ( ( card ` z ) = ( aleph ` x ) -> ( ( aleph ` x ) ~< ( aleph ` A ) <-> z ~< ( aleph ` A ) ) ) |
32 |
26 31
|
sylan9bb |
|- ( ( ( A e. On /\ x e. On ) /\ ( card ` z ) = ( aleph ` x ) ) -> ( x e. A <-> z ~< ( aleph ` A ) ) ) |
33 |
|
fveq2 |
|- ( y = x -> ( aleph ` y ) = ( aleph ` x ) ) |
34 |
33
|
breq1d |
|- ( y = x -> ( ( aleph ` y ) ~< z <-> ( aleph ` x ) ~< z ) ) |
35 |
34
|
rspcv |
|- ( x e. A -> ( A. y e. A ( aleph ` y ) ~< z -> ( aleph ` x ) ~< z ) ) |
36 |
|
sdomirr |
|- -. ( aleph ` x ) ~< ( aleph ` x ) |
37 |
|
sdomen2 |
|- ( ( card ` z ) ~~ z -> ( ( aleph ` x ) ~< ( card ` z ) <-> ( aleph ` x ) ~< z ) ) |
38 |
28 37
|
ax-mp |
|- ( ( aleph ` x ) ~< ( card ` z ) <-> ( aleph ` x ) ~< z ) |
39 |
|
breq2 |
|- ( ( card ` z ) = ( aleph ` x ) -> ( ( aleph ` x ) ~< ( card ` z ) <-> ( aleph ` x ) ~< ( aleph ` x ) ) ) |
40 |
38 39
|
bitr3id |
|- ( ( card ` z ) = ( aleph ` x ) -> ( ( aleph ` x ) ~< z <-> ( aleph ` x ) ~< ( aleph ` x ) ) ) |
41 |
36 40
|
mtbiri |
|- ( ( card ` z ) = ( aleph ` x ) -> -. ( aleph ` x ) ~< z ) |
42 |
35 41
|
nsyli |
|- ( x e. A -> ( ( card ` z ) = ( aleph ` x ) -> -. A. y e. A ( aleph ` y ) ~< z ) ) |
43 |
42
|
com12 |
|- ( ( card ` z ) = ( aleph ` x ) -> ( x e. A -> -. A. y e. A ( aleph ` y ) ~< z ) ) |
44 |
43
|
adantl |
|- ( ( ( A e. On /\ x e. On ) /\ ( card ` z ) = ( aleph ` x ) ) -> ( x e. A -> -. A. y e. A ( aleph ` y ) ~< z ) ) |
45 |
32 44
|
sylbird |
|- ( ( ( A e. On /\ x e. On ) /\ ( card ` z ) = ( aleph ` x ) ) -> ( z ~< ( aleph ` A ) -> -. A. y e. A ( aleph ` y ) ~< z ) ) |
46 |
45
|
rexlimdva2 |
|- ( A e. On -> ( E. x e. On ( card ` z ) = ( aleph ` x ) -> ( z ~< ( aleph ` A ) -> -. A. y e. A ( aleph ` y ) ~< z ) ) ) |
47 |
24 46
|
syl5 |
|- ( A e. On -> ( _om C_ ( card ` z ) -> ( z ~< ( aleph ` A ) -> -. A. y e. A ( aleph ` y ) ~< z ) ) ) |
48 |
21 47
|
syl5bi |
|- ( A e. On -> ( _om ~<_ z -> ( z ~< ( aleph ` A ) -> -. A. y e. A ( aleph ` y ) ~< z ) ) ) |
49 |
48
|
adantr |
|- ( ( A e. On /\ (/) e. A ) -> ( _om ~<_ z -> ( z ~< ( aleph ` A ) -> -. A. y e. A ( aleph ` y ) ~< z ) ) ) |
50 |
|
ne0i |
|- ( (/) e. A -> A =/= (/) ) |
51 |
|
onelon |
|- ( ( A e. On /\ y e. A ) -> y e. On ) |
52 |
|
alephgeom |
|- ( y e. On <-> _om C_ ( aleph ` y ) ) |
53 |
|
alephon |
|- ( aleph ` y ) e. On |
54 |
|
ssdomg |
|- ( ( aleph ` y ) e. On -> ( _om C_ ( aleph ` y ) -> _om ~<_ ( aleph ` y ) ) ) |
55 |
53 54
|
ax-mp |
|- ( _om C_ ( aleph ` y ) -> _om ~<_ ( aleph ` y ) ) |
56 |
52 55
|
sylbi |
|- ( y e. On -> _om ~<_ ( aleph ` y ) ) |
57 |
|
domtr |
|- ( ( z ~<_ _om /\ _om ~<_ ( aleph ` y ) ) -> z ~<_ ( aleph ` y ) ) |
58 |
56 57
|
sylan2 |
|- ( ( z ~<_ _om /\ y e. On ) -> z ~<_ ( aleph ` y ) ) |
59 |
|
domnsym |
|- ( z ~<_ ( aleph ` y ) -> -. ( aleph ` y ) ~< z ) |
60 |
58 59
|
syl |
|- ( ( z ~<_ _om /\ y e. On ) -> -. ( aleph ` y ) ~< z ) |
61 |
51 60
|
sylan2 |
|- ( ( z ~<_ _om /\ ( A e. On /\ y e. A ) ) -> -. ( aleph ` y ) ~< z ) |
62 |
61
|
expr |
|- ( ( z ~<_ _om /\ A e. On ) -> ( y e. A -> -. ( aleph ` y ) ~< z ) ) |
63 |
62
|
ralrimiv |
|- ( ( z ~<_ _om /\ A e. On ) -> A. y e. A -. ( aleph ` y ) ~< z ) |
64 |
|
r19.2z |
|- ( ( A =/= (/) /\ A. y e. A -. ( aleph ` y ) ~< z ) -> E. y e. A -. ( aleph ` y ) ~< z ) |
65 |
64
|
ex |
|- ( A =/= (/) -> ( A. y e. A -. ( aleph ` y ) ~< z -> E. y e. A -. ( aleph ` y ) ~< z ) ) |
66 |
50 63 65
|
syl2im |
|- ( (/) e. A -> ( ( z ~<_ _om /\ A e. On ) -> E. y e. A -. ( aleph ` y ) ~< z ) ) |
67 |
|
rexnal |
|- ( E. y e. A -. ( aleph ` y ) ~< z <-> -. A. y e. A ( aleph ` y ) ~< z ) |
68 |
66 67
|
syl6ib |
|- ( (/) e. A -> ( ( z ~<_ _om /\ A e. On ) -> -. A. y e. A ( aleph ` y ) ~< z ) ) |
69 |
68
|
com12 |
|- ( ( z ~<_ _om /\ A e. On ) -> ( (/) e. A -> -. A. y e. A ( aleph ` y ) ~< z ) ) |
70 |
69
|
expimpd |
|- ( z ~<_ _om -> ( ( A e. On /\ (/) e. A ) -> -. A. y e. A ( aleph ` y ) ~< z ) ) |
71 |
70
|
a1d |
|- ( z ~<_ _om -> ( z ~< ( aleph ` A ) -> ( ( A e. On /\ (/) e. A ) -> -. A. y e. A ( aleph ` y ) ~< z ) ) ) |
72 |
71
|
com3r |
|- ( ( A e. On /\ (/) e. A ) -> ( z ~<_ _om -> ( z ~< ( aleph ` A ) -> -. A. y e. A ( aleph ` y ) ~< z ) ) ) |
73 |
49 72
|
jaod |
|- ( ( A e. On /\ (/) e. A ) -> ( ( _om ~<_ z \/ z ~<_ _om ) -> ( z ~< ( aleph ` A ) -> -. A. y e. A ( aleph ` y ) ~< z ) ) ) |
74 |
16 73
|
mpi |
|- ( ( A e. On /\ (/) e. A ) -> ( z ~< ( aleph ` A ) -> -. A. y e. A ( aleph ` y ) ~< z ) ) |
75 |
|
breq2 |
|- ( x = z -> ( ( aleph ` y ) ~< x <-> ( aleph ` y ) ~< z ) ) |
76 |
75
|
ralbidv |
|- ( x = z -> ( A. y e. A ( aleph ` y ) ~< x <-> A. y e. A ( aleph ` y ) ~< z ) ) |
77 |
76
|
elrab |
|- ( z e. { x e. On | A. y e. A ( aleph ` y ) ~< x } <-> ( z e. On /\ A. y e. A ( aleph ` y ) ~< z ) ) |
78 |
77
|
simprbi |
|- ( z e. { x e. On | A. y e. A ( aleph ` y ) ~< x } -> A. y e. A ( aleph ` y ) ~< z ) |
79 |
78
|
con3i |
|- ( -. A. y e. A ( aleph ` y ) ~< z -> -. z e. { x e. On | A. y e. A ( aleph ` y ) ~< x } ) |
80 |
12 74 79
|
syl56 |
|- ( ( A e. On /\ (/) e. A ) -> ( z e. ( aleph ` A ) -> -. z e. { x e. On | A. y e. A ( aleph ` y ) ~< x } ) ) |
81 |
80
|
ralrimiv |
|- ( ( A e. On /\ (/) e. A ) -> A. z e. ( aleph ` A ) -. z e. { x e. On | A. y e. A ( aleph ` y ) ~< x } ) |
82 |
|
ssrab2 |
|- { x e. On | A. y e. A ( aleph ` y ) ~< x } C_ On |
83 |
|
oneqmini |
|- ( { x e. On | A. y e. A ( aleph ` y ) ~< x } C_ On -> ( ( ( aleph ` A ) e. { x e. On | A. y e. A ( aleph ` y ) ~< x } /\ A. z e. ( aleph ` A ) -. z e. { x e. On | A. y e. A ( aleph ` y ) ~< x } ) -> ( aleph ` A ) = |^| { x e. On | A. y e. A ( aleph ` y ) ~< x } ) ) |
84 |
82 83
|
ax-mp |
|- ( ( ( aleph ` A ) e. { x e. On | A. y e. A ( aleph ` y ) ~< x } /\ A. z e. ( aleph ` A ) -. z e. { x e. On | A. y e. A ( aleph ` y ) ~< x } ) -> ( aleph ` A ) = |^| { x e. On | A. y e. A ( aleph ` y ) ~< x } ) |
85 |
8 81 84
|
syl2an2r |
|- ( ( A e. On /\ (/) e. A ) -> ( aleph ` A ) = |^| { x e. On | A. y e. A ( aleph ` y ) ~< x } ) |