Step |
Hyp |
Ref |
Expression |
1 |
|
alephcard |
|- ( card ` ( aleph ` A ) ) = ( aleph ` A ) |
2 |
1
|
a1i |
|- ( A e. On -> ( card ` ( aleph ` A ) ) = ( aleph ` A ) ) |
3 |
|
alephgeom |
|- ( A e. On <-> _om C_ ( aleph ` A ) ) |
4 |
3
|
biimpi |
|- ( A e. On -> _om C_ ( aleph ` A ) ) |
5 |
|
alephord2i |
|- ( A e. On -> ( y e. A -> ( aleph ` y ) e. ( aleph ` A ) ) ) |
6 |
|
elirr |
|- -. ( aleph ` y ) e. ( aleph ` y ) |
7 |
|
eleq2 |
|- ( ( aleph ` A ) = ( aleph ` y ) -> ( ( aleph ` y ) e. ( aleph ` A ) <-> ( aleph ` y ) e. ( aleph ` y ) ) ) |
8 |
6 7
|
mtbiri |
|- ( ( aleph ` A ) = ( aleph ` y ) -> -. ( aleph ` y ) e. ( aleph ` A ) ) |
9 |
8
|
con2i |
|- ( ( aleph ` y ) e. ( aleph ` A ) -> -. ( aleph ` A ) = ( aleph ` y ) ) |
10 |
5 9
|
syl6 |
|- ( A e. On -> ( y e. A -> -. ( aleph ` A ) = ( aleph ` y ) ) ) |
11 |
10
|
ralrimiv |
|- ( A e. On -> A. y e. A -. ( aleph ` A ) = ( aleph ` y ) ) |
12 |
|
fvex |
|- ( aleph ` A ) e. _V |
13 |
|
fveq2 |
|- ( x = ( aleph ` A ) -> ( card ` x ) = ( card ` ( aleph ` A ) ) ) |
14 |
|
id |
|- ( x = ( aleph ` A ) -> x = ( aleph ` A ) ) |
15 |
13 14
|
eqeq12d |
|- ( x = ( aleph ` A ) -> ( ( card ` x ) = x <-> ( card ` ( aleph ` A ) ) = ( aleph ` A ) ) ) |
16 |
|
sseq2 |
|- ( x = ( aleph ` A ) -> ( _om C_ x <-> _om C_ ( aleph ` A ) ) ) |
17 |
|
eqeq1 |
|- ( x = ( aleph ` A ) -> ( x = ( aleph ` y ) <-> ( aleph ` A ) = ( aleph ` y ) ) ) |
18 |
17
|
notbid |
|- ( x = ( aleph ` A ) -> ( -. x = ( aleph ` y ) <-> -. ( aleph ` A ) = ( aleph ` y ) ) ) |
19 |
18
|
ralbidv |
|- ( x = ( aleph ` A ) -> ( A. y e. A -. x = ( aleph ` y ) <-> A. y e. A -. ( aleph ` A ) = ( aleph ` y ) ) ) |
20 |
15 16 19
|
3anbi123d |
|- ( x = ( aleph ` A ) -> ( ( ( card ` x ) = x /\ _om C_ x /\ A. y e. A -. x = ( aleph ` y ) ) <-> ( ( card ` ( aleph ` A ) ) = ( aleph ` A ) /\ _om C_ ( aleph ` A ) /\ A. y e. A -. ( aleph ` A ) = ( aleph ` y ) ) ) ) |
21 |
12 20
|
elab |
|- ( ( aleph ` A ) e. { x | ( ( card ` x ) = x /\ _om C_ x /\ A. y e. A -. x = ( aleph ` y ) ) } <-> ( ( card ` ( aleph ` A ) ) = ( aleph ` A ) /\ _om C_ ( aleph ` A ) /\ A. y e. A -. ( aleph ` A ) = ( aleph ` y ) ) ) |
22 |
2 4 11 21
|
syl3anbrc |
|- ( A e. On -> ( aleph ` A ) e. { x | ( ( card ` x ) = x /\ _om C_ x /\ A. y e. A -. x = ( aleph ` y ) ) } ) |
23 |
|
eleq1 |
|- ( z = ( aleph ` y ) -> ( z e. ( aleph ` A ) <-> ( aleph ` y ) e. ( aleph ` A ) ) ) |
24 |
|
alephord2 |
|- ( ( y e. On /\ A e. On ) -> ( y e. A <-> ( aleph ` y ) e. ( aleph ` A ) ) ) |
25 |
24
|
bicomd |
|- ( ( y e. On /\ A e. On ) -> ( ( aleph ` y ) e. ( aleph ` A ) <-> y e. A ) ) |
26 |
23 25
|
sylan9bbr |
|- ( ( ( y e. On /\ A e. On ) /\ z = ( aleph ` y ) ) -> ( z e. ( aleph ` A ) <-> y e. A ) ) |
27 |
26
|
biimpcd |
|- ( z e. ( aleph ` A ) -> ( ( ( y e. On /\ A e. On ) /\ z = ( aleph ` y ) ) -> y e. A ) ) |
28 |
|
simpr |
|- ( ( ( y e. On /\ A e. On ) /\ z = ( aleph ` y ) ) -> z = ( aleph ` y ) ) |
29 |
27 28
|
jca2 |
|- ( z e. ( aleph ` A ) -> ( ( ( y e. On /\ A e. On ) /\ z = ( aleph ` y ) ) -> ( y e. A /\ z = ( aleph ` y ) ) ) ) |
30 |
29
|
exp4c |
|- ( z e. ( aleph ` A ) -> ( y e. On -> ( A e. On -> ( z = ( aleph ` y ) -> ( y e. A /\ z = ( aleph ` y ) ) ) ) ) ) |
31 |
30
|
com3r |
|- ( A e. On -> ( z e. ( aleph ` A ) -> ( y e. On -> ( z = ( aleph ` y ) -> ( y e. A /\ z = ( aleph ` y ) ) ) ) ) ) |
32 |
31
|
imp4b |
|- ( ( A e. On /\ z e. ( aleph ` A ) ) -> ( ( y e. On /\ z = ( aleph ` y ) ) -> ( y e. A /\ z = ( aleph ` y ) ) ) ) |
33 |
32
|
reximdv2 |
|- ( ( A e. On /\ z e. ( aleph ` A ) ) -> ( E. y e. On z = ( aleph ` y ) -> E. y e. A z = ( aleph ` y ) ) ) |
34 |
|
cardalephex |
|- ( _om C_ z -> ( ( card ` z ) = z <-> E. y e. On z = ( aleph ` y ) ) ) |
35 |
34
|
biimpac |
|- ( ( ( card ` z ) = z /\ _om C_ z ) -> E. y e. On z = ( aleph ` y ) ) |
36 |
33 35
|
impel |
|- ( ( ( A e. On /\ z e. ( aleph ` A ) ) /\ ( ( card ` z ) = z /\ _om C_ z ) ) -> E. y e. A z = ( aleph ` y ) ) |
37 |
|
dfrex2 |
|- ( E. y e. A z = ( aleph ` y ) <-> -. A. y e. A -. z = ( aleph ` y ) ) |
38 |
36 37
|
sylib |
|- ( ( ( A e. On /\ z e. ( aleph ` A ) ) /\ ( ( card ` z ) = z /\ _om C_ z ) ) -> -. A. y e. A -. z = ( aleph ` y ) ) |
39 |
|
nan |
|- ( ( ( A e. On /\ z e. ( aleph ` A ) ) -> -. ( ( ( card ` z ) = z /\ _om C_ z ) /\ A. y e. A -. z = ( aleph ` y ) ) ) <-> ( ( ( A e. On /\ z e. ( aleph ` A ) ) /\ ( ( card ` z ) = z /\ _om C_ z ) ) -> -. A. y e. A -. z = ( aleph ` y ) ) ) |
40 |
38 39
|
mpbir |
|- ( ( A e. On /\ z e. ( aleph ` A ) ) -> -. ( ( ( card ` z ) = z /\ _om C_ z ) /\ A. y e. A -. z = ( aleph ` y ) ) ) |
41 |
40
|
ex |
|- ( A e. On -> ( z e. ( aleph ` A ) -> -. ( ( ( card ` z ) = z /\ _om C_ z ) /\ A. y e. A -. z = ( aleph ` y ) ) ) ) |
42 |
|
vex |
|- z e. _V |
43 |
|
fveq2 |
|- ( x = z -> ( card ` x ) = ( card ` z ) ) |
44 |
|
id |
|- ( x = z -> x = z ) |
45 |
43 44
|
eqeq12d |
|- ( x = z -> ( ( card ` x ) = x <-> ( card ` z ) = z ) ) |
46 |
|
sseq2 |
|- ( x = z -> ( _om C_ x <-> _om C_ z ) ) |
47 |
|
eqeq1 |
|- ( x = z -> ( x = ( aleph ` y ) <-> z = ( aleph ` y ) ) ) |
48 |
47
|
notbid |
|- ( x = z -> ( -. x = ( aleph ` y ) <-> -. z = ( aleph ` y ) ) ) |
49 |
48
|
ralbidv |
|- ( x = z -> ( A. y e. A -. x = ( aleph ` y ) <-> A. y e. A -. z = ( aleph ` y ) ) ) |
50 |
45 46 49
|
3anbi123d |
|- ( x = z -> ( ( ( card ` x ) = x /\ _om C_ x /\ A. y e. A -. x = ( aleph ` y ) ) <-> ( ( card ` z ) = z /\ _om C_ z /\ A. y e. A -. z = ( aleph ` y ) ) ) ) |
51 |
42 50
|
elab |
|- ( z e. { x | ( ( card ` x ) = x /\ _om C_ x /\ A. y e. A -. x = ( aleph ` y ) ) } <-> ( ( card ` z ) = z /\ _om C_ z /\ A. y e. A -. z = ( aleph ` y ) ) ) |
52 |
|
df-3an |
|- ( ( ( card ` z ) = z /\ _om C_ z /\ A. y e. A -. z = ( aleph ` y ) ) <-> ( ( ( card ` z ) = z /\ _om C_ z ) /\ A. y e. A -. z = ( aleph ` y ) ) ) |
53 |
51 52
|
bitri |
|- ( z e. { x | ( ( card ` x ) = x /\ _om C_ x /\ A. y e. A -. x = ( aleph ` y ) ) } <-> ( ( ( card ` z ) = z /\ _om C_ z ) /\ A. y e. A -. z = ( aleph ` y ) ) ) |
54 |
53
|
notbii |
|- ( -. z e. { x | ( ( card ` x ) = x /\ _om C_ x /\ A. y e. A -. x = ( aleph ` y ) ) } <-> -. ( ( ( card ` z ) = z /\ _om C_ z ) /\ A. y e. A -. z = ( aleph ` y ) ) ) |
55 |
41 54
|
syl6ibr |
|- ( A e. On -> ( z e. ( aleph ` A ) -> -. z e. { x | ( ( card ` x ) = x /\ _om C_ x /\ A. y e. A -. x = ( aleph ` y ) ) } ) ) |
56 |
55
|
ralrimiv |
|- ( A e. On -> A. z e. ( aleph ` A ) -. z e. { x | ( ( card ` x ) = x /\ _om C_ x /\ A. y e. A -. x = ( aleph ` y ) ) } ) |
57 |
|
cardon |
|- ( card ` x ) e. On |
58 |
|
eleq1 |
|- ( ( card ` x ) = x -> ( ( card ` x ) e. On <-> x e. On ) ) |
59 |
57 58
|
mpbii |
|- ( ( card ` x ) = x -> x e. On ) |
60 |
59
|
3ad2ant1 |
|- ( ( ( card ` x ) = x /\ _om C_ x /\ A. y e. A -. x = ( aleph ` y ) ) -> x e. On ) |
61 |
60
|
abssi |
|- { x | ( ( card ` x ) = x /\ _om C_ x /\ A. y e. A -. x = ( aleph ` y ) ) } C_ On |
62 |
|
oneqmini |
|- ( { x | ( ( card ` x ) = x /\ _om C_ x /\ A. y e. A -. x = ( aleph ` y ) ) } C_ On -> ( ( ( aleph ` A ) e. { x | ( ( card ` x ) = x /\ _om C_ x /\ A. y e. A -. x = ( aleph ` y ) ) } /\ A. z e. ( aleph ` A ) -. z e. { x | ( ( card ` x ) = x /\ _om C_ x /\ A. y e. A -. x = ( aleph ` y ) ) } ) -> ( aleph ` A ) = |^| { x | ( ( card ` x ) = x /\ _om C_ x /\ A. y e. A -. x = ( aleph ` y ) ) } ) ) |
63 |
61 62
|
ax-mp |
|- ( ( ( aleph ` A ) e. { x | ( ( card ` x ) = x /\ _om C_ x /\ A. y e. A -. x = ( aleph ` y ) ) } /\ A. z e. ( aleph ` A ) -. z e. { x | ( ( card ` x ) = x /\ _om C_ x /\ A. y e. A -. x = ( aleph ` y ) ) } ) -> ( aleph ` A ) = |^| { x | ( ( card ` x ) = x /\ _om C_ x /\ A. y e. A -. x = ( aleph ` y ) ) } ) |
64 |
22 56 63
|
syl2anc |
|- ( A e. On -> ( aleph ` A ) = |^| { x | ( ( card ` x ) = x /\ _om C_ x /\ A. y e. A -. x = ( aleph ` y ) ) } ) |