Description: Biconditional form of aleximi . (Contributed by BJ, 16-Nov-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | alexbii.1 | |- ( ph -> ( ps <-> ch ) ) |
|
Assertion | alexbii | |- ( A. x ph -> ( E. x ps <-> E. x ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alexbii.1 | |- ( ph -> ( ps <-> ch ) ) |
|
2 | 1 | biimpd | |- ( ph -> ( ps -> ch ) ) |
3 | 2 | aleximi | |- ( A. x ph -> ( E. x ps -> E. x ch ) ) |
4 | 1 | biimprd | |- ( ph -> ( ch -> ps ) ) |
5 | 4 | aleximi | |- ( A. x ph -> ( E. x ch -> E. x ps ) ) |
6 | 3 5 | impbid | |- ( A. x ph -> ( E. x ps <-> E. x ch ) ) |