Step |
Hyp |
Ref |
Expression |
1 |
|
eqeq2 |
|- ( y = A -> ( x = y <-> x = A ) ) |
2 |
1
|
anbi1d |
|- ( y = A -> ( ( x = y /\ ph ) <-> ( x = A /\ ph ) ) ) |
3 |
2
|
exbidv |
|- ( y = A -> ( E. x ( x = y /\ ph ) <-> E. x ( x = A /\ ph ) ) ) |
4 |
1
|
imbi1d |
|- ( y = A -> ( ( x = y -> ph ) <-> ( x = A -> ph ) ) ) |
5 |
4
|
albidv |
|- ( y = A -> ( A. x ( x = y -> ph ) <-> A. x ( x = A -> ph ) ) ) |
6 |
|
sbalex |
|- ( E. x ( x = y /\ ph ) <-> A. x ( x = y -> ph ) ) |
7 |
3 5 6
|
vtoclbg |
|- ( A e. V -> ( E. x ( x = A /\ ph ) <-> A. x ( x = A -> ph ) ) ) |
8 |
7
|
bicomd |
|- ( A e. V -> ( A. x ( x = A -> ph ) <-> E. x ( x = A /\ ph ) ) ) |