| Step | Hyp | Ref | Expression | 
						
							| 1 |  | alexsub.1 |  |-  ( ph -> X e. UFL ) | 
						
							| 2 |  | alexsub.2 |  |-  ( ph -> X = U. B ) | 
						
							| 3 |  | alexsub.3 |  |-  ( ph -> J = ( topGen ` ( fi ` B ) ) ) | 
						
							| 4 |  | alexsub.4 |  |-  ( ( ph /\ ( x C_ B /\ X = U. x ) ) -> E. y e. ( ~P x i^i Fin ) X = U. y ) | 
						
							| 5 | 1 | adantr |  |-  ( ( ph /\ ( f e. ( UFil ` X ) /\ ( J fLim f ) = (/) ) ) -> X e. UFL ) | 
						
							| 6 | 2 | adantr |  |-  ( ( ph /\ ( f e. ( UFil ` X ) /\ ( J fLim f ) = (/) ) ) -> X = U. B ) | 
						
							| 7 | 3 | adantr |  |-  ( ( ph /\ ( f e. ( UFil ` X ) /\ ( J fLim f ) = (/) ) ) -> J = ( topGen ` ( fi ` B ) ) ) | 
						
							| 8 | 4 | adantlr |  |-  ( ( ( ph /\ ( f e. ( UFil ` X ) /\ ( J fLim f ) = (/) ) ) /\ ( x C_ B /\ X = U. x ) ) -> E. y e. ( ~P x i^i Fin ) X = U. y ) | 
						
							| 9 |  | simprl |  |-  ( ( ph /\ ( f e. ( UFil ` X ) /\ ( J fLim f ) = (/) ) ) -> f e. ( UFil ` X ) ) | 
						
							| 10 |  | simprr |  |-  ( ( ph /\ ( f e. ( UFil ` X ) /\ ( J fLim f ) = (/) ) ) -> ( J fLim f ) = (/) ) | 
						
							| 11 | 5 6 7 8 9 10 | alexsublem |  |-  -. ( ph /\ ( f e. ( UFil ` X ) /\ ( J fLim f ) = (/) ) ) | 
						
							| 12 | 11 | pm2.21i |  |-  ( ( ph /\ ( f e. ( UFil ` X ) /\ ( J fLim f ) = (/) ) ) -> -. ( J fLim f ) = (/) ) | 
						
							| 13 | 12 | expr |  |-  ( ( ph /\ f e. ( UFil ` X ) ) -> ( ( J fLim f ) = (/) -> -. ( J fLim f ) = (/) ) ) | 
						
							| 14 | 13 | pm2.01d |  |-  ( ( ph /\ f e. ( UFil ` X ) ) -> -. ( J fLim f ) = (/) ) | 
						
							| 15 | 14 | neqned |  |-  ( ( ph /\ f e. ( UFil ` X ) ) -> ( J fLim f ) =/= (/) ) | 
						
							| 16 | 15 | ralrimiva |  |-  ( ph -> A. f e. ( UFil ` X ) ( J fLim f ) =/= (/) ) | 
						
							| 17 |  | fibas |  |-  ( fi ` B ) e. TopBases | 
						
							| 18 |  | tgtopon |  |-  ( ( fi ` B ) e. TopBases -> ( topGen ` ( fi ` B ) ) e. ( TopOn ` U. ( fi ` B ) ) ) | 
						
							| 19 | 17 18 | ax-mp |  |-  ( topGen ` ( fi ` B ) ) e. ( TopOn ` U. ( fi ` B ) ) | 
						
							| 20 | 3 19 | eqeltrdi |  |-  ( ph -> J e. ( TopOn ` U. ( fi ` B ) ) ) | 
						
							| 21 | 1 | elexd |  |-  ( ph -> X e. _V ) | 
						
							| 22 | 2 21 | eqeltrrd |  |-  ( ph -> U. B e. _V ) | 
						
							| 23 |  | uniexb |  |-  ( B e. _V <-> U. B e. _V ) | 
						
							| 24 | 22 23 | sylibr |  |-  ( ph -> B e. _V ) | 
						
							| 25 |  | fiuni |  |-  ( B e. _V -> U. B = U. ( fi ` B ) ) | 
						
							| 26 | 24 25 | syl |  |-  ( ph -> U. B = U. ( fi ` B ) ) | 
						
							| 27 | 2 26 | eqtrd |  |-  ( ph -> X = U. ( fi ` B ) ) | 
						
							| 28 | 27 | fveq2d |  |-  ( ph -> ( TopOn ` X ) = ( TopOn ` U. ( fi ` B ) ) ) | 
						
							| 29 | 20 28 | eleqtrrd |  |-  ( ph -> J e. ( TopOn ` X ) ) | 
						
							| 30 |  | ufilcmp |  |-  ( ( X e. UFL /\ J e. ( TopOn ` X ) ) -> ( J e. Comp <-> A. f e. ( UFil ` X ) ( J fLim f ) =/= (/) ) ) | 
						
							| 31 | 1 29 30 | syl2anc |  |-  ( ph -> ( J e. Comp <-> A. f e. ( UFil ` X ) ( J fLim f ) =/= (/) ) ) | 
						
							| 32 | 16 31 | mpbird |  |-  ( ph -> J e. Comp ) |