| Step | Hyp | Ref | Expression | 
						
							| 1 |  | alexsub.1 |  |-  ( ph -> X e. UFL ) | 
						
							| 2 |  | alexsub.2 |  |-  ( ph -> X = U. B ) | 
						
							| 3 |  | alexsub.3 |  |-  ( ph -> J = ( topGen ` ( fi ` B ) ) ) | 
						
							| 4 |  | alexsub.4 |  |-  ( ( ph /\ ( x C_ B /\ X = U. x ) ) -> E. y e. ( ~P x i^i Fin ) X = U. y ) | 
						
							| 5 |  | alexsub.5 |  |-  ( ph -> F e. ( UFil ` X ) ) | 
						
							| 6 |  | alexsub.6 |  |-  ( ph -> ( J fLim F ) = (/) ) | 
						
							| 7 |  | eldif |  |-  ( x e. ( X \ U. ( B \ F ) ) <-> ( x e. X /\ -. x e. U. ( B \ F ) ) ) | 
						
							| 8 | 3 | eleq2d |  |-  ( ph -> ( y e. J <-> y e. ( topGen ` ( fi ` B ) ) ) ) | 
						
							| 9 | 8 | anbi1d |  |-  ( ph -> ( ( y e. J /\ x e. y ) <-> ( y e. ( topGen ` ( fi ` B ) ) /\ x e. y ) ) ) | 
						
							| 10 | 9 | biimpa |  |-  ( ( ph /\ ( y e. J /\ x e. y ) ) -> ( y e. ( topGen ` ( fi ` B ) ) /\ x e. y ) ) | 
						
							| 11 | 10 | adantlr |  |-  ( ( ( ph /\ ( x e. X /\ -. x e. U. ( B \ F ) ) ) /\ ( y e. J /\ x e. y ) ) -> ( y e. ( topGen ` ( fi ` B ) ) /\ x e. y ) ) | 
						
							| 12 |  | tg2 |  |-  ( ( y e. ( topGen ` ( fi ` B ) ) /\ x e. y ) -> E. z e. ( fi ` B ) ( x e. z /\ z C_ y ) ) | 
						
							| 13 | 11 12 | syl |  |-  ( ( ( ph /\ ( x e. X /\ -. x e. U. ( B \ F ) ) ) /\ ( y e. J /\ x e. y ) ) -> E. z e. ( fi ` B ) ( x e. z /\ z C_ y ) ) | 
						
							| 14 |  | ufilfil |  |-  ( F e. ( UFil ` X ) -> F e. ( Fil ` X ) ) | 
						
							| 15 | 5 14 | syl |  |-  ( ph -> F e. ( Fil ` X ) ) | 
						
							| 16 | 15 | ad3antrrr |  |-  ( ( ( ( ph /\ ( x e. X /\ -. x e. U. ( B \ F ) ) ) /\ ( y e. J /\ x e. y ) ) /\ ( z e. ( fi ` B ) /\ ( x e. z /\ z C_ y ) ) ) -> F e. ( Fil ` X ) ) | 
						
							| 17 | 5 | elfvexd |  |-  ( ph -> X e. _V ) | 
						
							| 18 | 2 17 | eqeltrrd |  |-  ( ph -> U. B e. _V ) | 
						
							| 19 |  | uniexb |  |-  ( B e. _V <-> U. B e. _V ) | 
						
							| 20 | 18 19 | sylibr |  |-  ( ph -> B e. _V ) | 
						
							| 21 |  | elfi2 |  |-  ( B e. _V -> ( z e. ( fi ` B ) <-> E. y e. ( ( ~P B i^i Fin ) \ { (/) } ) z = |^| y ) ) | 
						
							| 22 | 20 21 | syl |  |-  ( ph -> ( z e. ( fi ` B ) <-> E. y e. ( ( ~P B i^i Fin ) \ { (/) } ) z = |^| y ) ) | 
						
							| 23 | 22 | adantr |  |-  ( ( ph /\ ( x e. X /\ -. x e. U. ( B \ F ) ) ) -> ( z e. ( fi ` B ) <-> E. y e. ( ( ~P B i^i Fin ) \ { (/) } ) z = |^| y ) ) | 
						
							| 24 | 15 | ad2antrr |  |-  ( ( ( ph /\ ( x e. X /\ -. x e. U. ( B \ F ) ) ) /\ ( y e. ( ( ~P B i^i Fin ) \ { (/) } ) /\ x e. |^| y ) ) -> F e. ( Fil ` X ) ) | 
						
							| 25 |  | simplrr |  |-  ( ( ( ph /\ ( x e. X /\ -. x e. U. ( B \ F ) ) ) /\ ( ( y e. ( ( ~P B i^i Fin ) \ { (/) } ) /\ x e. |^| y ) /\ z e. y ) ) -> -. x e. U. ( B \ F ) ) | 
						
							| 26 |  | intss1 |  |-  ( z e. y -> |^| y C_ z ) | 
						
							| 27 | 26 | adantl |  |-  ( ( ( y e. ( ( ~P B i^i Fin ) \ { (/) } ) /\ x e. |^| y ) /\ z e. y ) -> |^| y C_ z ) | 
						
							| 28 |  | simplr |  |-  ( ( ( y e. ( ( ~P B i^i Fin ) \ { (/) } ) /\ x e. |^| y ) /\ z e. y ) -> x e. |^| y ) | 
						
							| 29 | 27 28 | sseldd |  |-  ( ( ( y e. ( ( ~P B i^i Fin ) \ { (/) } ) /\ x e. |^| y ) /\ z e. y ) -> x e. z ) | 
						
							| 30 | 29 | ad2antlr |  |-  ( ( ( ( ph /\ ( x e. X /\ -. x e. U. ( B \ F ) ) ) /\ ( ( y e. ( ( ~P B i^i Fin ) \ { (/) } ) /\ x e. |^| y ) /\ z e. y ) ) /\ -. z e. F ) -> x e. z ) | 
						
							| 31 |  | eldifsn |  |-  ( y e. ( ( ~P B i^i Fin ) \ { (/) } ) <-> ( y e. ( ~P B i^i Fin ) /\ y =/= (/) ) ) | 
						
							| 32 | 31 | simplbi |  |-  ( y e. ( ( ~P B i^i Fin ) \ { (/) } ) -> y e. ( ~P B i^i Fin ) ) | 
						
							| 33 | 32 | ad2antrl |  |-  ( ( ( ph /\ ( x e. X /\ -. x e. U. ( B \ F ) ) ) /\ ( y e. ( ( ~P B i^i Fin ) \ { (/) } ) /\ x e. |^| y ) ) -> y e. ( ~P B i^i Fin ) ) | 
						
							| 34 |  | elfpw |  |-  ( y e. ( ~P B i^i Fin ) <-> ( y C_ B /\ y e. Fin ) ) | 
						
							| 35 | 34 | simplbi |  |-  ( y e. ( ~P B i^i Fin ) -> y C_ B ) | 
						
							| 36 | 33 35 | syl |  |-  ( ( ( ph /\ ( x e. X /\ -. x e. U. ( B \ F ) ) ) /\ ( y e. ( ( ~P B i^i Fin ) \ { (/) } ) /\ x e. |^| y ) ) -> y C_ B ) | 
						
							| 37 | 36 | sselda |  |-  ( ( ( ( ph /\ ( x e. X /\ -. x e. U. ( B \ F ) ) ) /\ ( y e. ( ( ~P B i^i Fin ) \ { (/) } ) /\ x e. |^| y ) ) /\ z e. y ) -> z e. B ) | 
						
							| 38 | 37 | anasss |  |-  ( ( ( ph /\ ( x e. X /\ -. x e. U. ( B \ F ) ) ) /\ ( ( y e. ( ( ~P B i^i Fin ) \ { (/) } ) /\ x e. |^| y ) /\ z e. y ) ) -> z e. B ) | 
						
							| 39 | 38 | anim1i |  |-  ( ( ( ( ph /\ ( x e. X /\ -. x e. U. ( B \ F ) ) ) /\ ( ( y e. ( ( ~P B i^i Fin ) \ { (/) } ) /\ x e. |^| y ) /\ z e. y ) ) /\ -. z e. F ) -> ( z e. B /\ -. z e. F ) ) | 
						
							| 40 |  | eldif |  |-  ( z e. ( B \ F ) <-> ( z e. B /\ -. z e. F ) ) | 
						
							| 41 | 39 40 | sylibr |  |-  ( ( ( ( ph /\ ( x e. X /\ -. x e. U. ( B \ F ) ) ) /\ ( ( y e. ( ( ~P B i^i Fin ) \ { (/) } ) /\ x e. |^| y ) /\ z e. y ) ) /\ -. z e. F ) -> z e. ( B \ F ) ) | 
						
							| 42 |  | elunii |  |-  ( ( x e. z /\ z e. ( B \ F ) ) -> x e. U. ( B \ F ) ) | 
						
							| 43 | 30 41 42 | syl2anc |  |-  ( ( ( ( ph /\ ( x e. X /\ -. x e. U. ( B \ F ) ) ) /\ ( ( y e. ( ( ~P B i^i Fin ) \ { (/) } ) /\ x e. |^| y ) /\ z e. y ) ) /\ -. z e. F ) -> x e. U. ( B \ F ) ) | 
						
							| 44 | 43 | ex |  |-  ( ( ( ph /\ ( x e. X /\ -. x e. U. ( B \ F ) ) ) /\ ( ( y e. ( ( ~P B i^i Fin ) \ { (/) } ) /\ x e. |^| y ) /\ z e. y ) ) -> ( -. z e. F -> x e. U. ( B \ F ) ) ) | 
						
							| 45 | 25 44 | mt3d |  |-  ( ( ( ph /\ ( x e. X /\ -. x e. U. ( B \ F ) ) ) /\ ( ( y e. ( ( ~P B i^i Fin ) \ { (/) } ) /\ x e. |^| y ) /\ z e. y ) ) -> z e. F ) | 
						
							| 46 | 45 | expr |  |-  ( ( ( ph /\ ( x e. X /\ -. x e. U. ( B \ F ) ) ) /\ ( y e. ( ( ~P B i^i Fin ) \ { (/) } ) /\ x e. |^| y ) ) -> ( z e. y -> z e. F ) ) | 
						
							| 47 | 46 | ssrdv |  |-  ( ( ( ph /\ ( x e. X /\ -. x e. U. ( B \ F ) ) ) /\ ( y e. ( ( ~P B i^i Fin ) \ { (/) } ) /\ x e. |^| y ) ) -> y C_ F ) | 
						
							| 48 |  | eldifsni |  |-  ( y e. ( ( ~P B i^i Fin ) \ { (/) } ) -> y =/= (/) ) | 
						
							| 49 | 48 | ad2antrl |  |-  ( ( ( ph /\ ( x e. X /\ -. x e. U. ( B \ F ) ) ) /\ ( y e. ( ( ~P B i^i Fin ) \ { (/) } ) /\ x e. |^| y ) ) -> y =/= (/) ) | 
						
							| 50 |  | elinel2 |  |-  ( y e. ( ~P B i^i Fin ) -> y e. Fin ) | 
						
							| 51 | 33 50 | syl |  |-  ( ( ( ph /\ ( x e. X /\ -. x e. U. ( B \ F ) ) ) /\ ( y e. ( ( ~P B i^i Fin ) \ { (/) } ) /\ x e. |^| y ) ) -> y e. Fin ) | 
						
							| 52 |  | elfir |  |-  ( ( F e. ( Fil ` X ) /\ ( y C_ F /\ y =/= (/) /\ y e. Fin ) ) -> |^| y e. ( fi ` F ) ) | 
						
							| 53 | 24 47 49 51 52 | syl13anc |  |-  ( ( ( ph /\ ( x e. X /\ -. x e. U. ( B \ F ) ) ) /\ ( y e. ( ( ~P B i^i Fin ) \ { (/) } ) /\ x e. |^| y ) ) -> |^| y e. ( fi ` F ) ) | 
						
							| 54 |  | filfi |  |-  ( F e. ( Fil ` X ) -> ( fi ` F ) = F ) | 
						
							| 55 | 24 54 | syl |  |-  ( ( ( ph /\ ( x e. X /\ -. x e. U. ( B \ F ) ) ) /\ ( y e. ( ( ~P B i^i Fin ) \ { (/) } ) /\ x e. |^| y ) ) -> ( fi ` F ) = F ) | 
						
							| 56 | 53 55 | eleqtrd |  |-  ( ( ( ph /\ ( x e. X /\ -. x e. U. ( B \ F ) ) ) /\ ( y e. ( ( ~P B i^i Fin ) \ { (/) } ) /\ x e. |^| y ) ) -> |^| y e. F ) | 
						
							| 57 | 56 | expr |  |-  ( ( ( ph /\ ( x e. X /\ -. x e. U. ( B \ F ) ) ) /\ y e. ( ( ~P B i^i Fin ) \ { (/) } ) ) -> ( x e. |^| y -> |^| y e. F ) ) | 
						
							| 58 |  | eleq2 |  |-  ( z = |^| y -> ( x e. z <-> x e. |^| y ) ) | 
						
							| 59 |  | eleq1 |  |-  ( z = |^| y -> ( z e. F <-> |^| y e. F ) ) | 
						
							| 60 | 58 59 | imbi12d |  |-  ( z = |^| y -> ( ( x e. z -> z e. F ) <-> ( x e. |^| y -> |^| y e. F ) ) ) | 
						
							| 61 | 57 60 | syl5ibrcom |  |-  ( ( ( ph /\ ( x e. X /\ -. x e. U. ( B \ F ) ) ) /\ y e. ( ( ~P B i^i Fin ) \ { (/) } ) ) -> ( z = |^| y -> ( x e. z -> z e. F ) ) ) | 
						
							| 62 | 61 | rexlimdva |  |-  ( ( ph /\ ( x e. X /\ -. x e. U. ( B \ F ) ) ) -> ( E. y e. ( ( ~P B i^i Fin ) \ { (/) } ) z = |^| y -> ( x e. z -> z e. F ) ) ) | 
						
							| 63 | 23 62 | sylbid |  |-  ( ( ph /\ ( x e. X /\ -. x e. U. ( B \ F ) ) ) -> ( z e. ( fi ` B ) -> ( x e. z -> z e. F ) ) ) | 
						
							| 64 | 63 | imp32 |  |-  ( ( ( ph /\ ( x e. X /\ -. x e. U. ( B \ F ) ) ) /\ ( z e. ( fi ` B ) /\ x e. z ) ) -> z e. F ) | 
						
							| 65 | 64 | adantrrr |  |-  ( ( ( ph /\ ( x e. X /\ -. x e. U. ( B \ F ) ) ) /\ ( z e. ( fi ` B ) /\ ( x e. z /\ z C_ y ) ) ) -> z e. F ) | 
						
							| 66 | 65 | adantlr |  |-  ( ( ( ( ph /\ ( x e. X /\ -. x e. U. ( B \ F ) ) ) /\ ( y e. J /\ x e. y ) ) /\ ( z e. ( fi ` B ) /\ ( x e. z /\ z C_ y ) ) ) -> z e. F ) | 
						
							| 67 |  | elssuni |  |-  ( y e. J -> y C_ U. J ) | 
						
							| 68 | 67 | ad2antrl |  |-  ( ( ( ph /\ ( x e. X /\ -. x e. U. ( B \ F ) ) ) /\ ( y e. J /\ x e. y ) ) -> y C_ U. J ) | 
						
							| 69 |  | fibas |  |-  ( fi ` B ) e. TopBases | 
						
							| 70 |  | tgtopon |  |-  ( ( fi ` B ) e. TopBases -> ( topGen ` ( fi ` B ) ) e. ( TopOn ` U. ( fi ` B ) ) ) | 
						
							| 71 | 69 70 | ax-mp |  |-  ( topGen ` ( fi ` B ) ) e. ( TopOn ` U. ( fi ` B ) ) | 
						
							| 72 | 3 71 | eqeltrdi |  |-  ( ph -> J e. ( TopOn ` U. ( fi ` B ) ) ) | 
						
							| 73 |  | fiuni |  |-  ( B e. _V -> U. B = U. ( fi ` B ) ) | 
						
							| 74 | 20 73 | syl |  |-  ( ph -> U. B = U. ( fi ` B ) ) | 
						
							| 75 | 2 74 | eqtrd |  |-  ( ph -> X = U. ( fi ` B ) ) | 
						
							| 76 | 75 | fveq2d |  |-  ( ph -> ( TopOn ` X ) = ( TopOn ` U. ( fi ` B ) ) ) | 
						
							| 77 | 72 76 | eleqtrrd |  |-  ( ph -> J e. ( TopOn ` X ) ) | 
						
							| 78 |  | toponuni |  |-  ( J e. ( TopOn ` X ) -> X = U. J ) | 
						
							| 79 | 77 78 | syl |  |-  ( ph -> X = U. J ) | 
						
							| 80 | 79 | ad2antrr |  |-  ( ( ( ph /\ ( x e. X /\ -. x e. U. ( B \ F ) ) ) /\ ( y e. J /\ x e. y ) ) -> X = U. J ) | 
						
							| 81 | 68 80 | sseqtrrd |  |-  ( ( ( ph /\ ( x e. X /\ -. x e. U. ( B \ F ) ) ) /\ ( y e. J /\ x e. y ) ) -> y C_ X ) | 
						
							| 82 | 81 | adantr |  |-  ( ( ( ( ph /\ ( x e. X /\ -. x e. U. ( B \ F ) ) ) /\ ( y e. J /\ x e. y ) ) /\ ( z e. ( fi ` B ) /\ ( x e. z /\ z C_ y ) ) ) -> y C_ X ) | 
						
							| 83 |  | simprrr |  |-  ( ( ( ( ph /\ ( x e. X /\ -. x e. U. ( B \ F ) ) ) /\ ( y e. J /\ x e. y ) ) /\ ( z e. ( fi ` B ) /\ ( x e. z /\ z C_ y ) ) ) -> z C_ y ) | 
						
							| 84 |  | filss |  |-  ( ( F e. ( Fil ` X ) /\ ( z e. F /\ y C_ X /\ z C_ y ) ) -> y e. F ) | 
						
							| 85 | 16 66 82 83 84 | syl13anc |  |-  ( ( ( ( ph /\ ( x e. X /\ -. x e. U. ( B \ F ) ) ) /\ ( y e. J /\ x e. y ) ) /\ ( z e. ( fi ` B ) /\ ( x e. z /\ z C_ y ) ) ) -> y e. F ) | 
						
							| 86 | 13 85 | rexlimddv |  |-  ( ( ( ph /\ ( x e. X /\ -. x e. U. ( B \ F ) ) ) /\ ( y e. J /\ x e. y ) ) -> y e. F ) | 
						
							| 87 | 86 | expr |  |-  ( ( ( ph /\ ( x e. X /\ -. x e. U. ( B \ F ) ) ) /\ y e. J ) -> ( x e. y -> y e. F ) ) | 
						
							| 88 | 87 | ralrimiva |  |-  ( ( ph /\ ( x e. X /\ -. x e. U. ( B \ F ) ) ) -> A. y e. J ( x e. y -> y e. F ) ) | 
						
							| 89 | 88 | expr |  |-  ( ( ph /\ x e. X ) -> ( -. x e. U. ( B \ F ) -> A. y e. J ( x e. y -> y e. F ) ) ) | 
						
							| 90 | 89 | imdistanda |  |-  ( ph -> ( ( x e. X /\ -. x e. U. ( B \ F ) ) -> ( x e. X /\ A. y e. J ( x e. y -> y e. F ) ) ) ) | 
						
							| 91 | 7 90 | biimtrid |  |-  ( ph -> ( x e. ( X \ U. ( B \ F ) ) -> ( x e. X /\ A. y e. J ( x e. y -> y e. F ) ) ) ) | 
						
							| 92 |  | flimopn |  |-  ( ( J e. ( TopOn ` X ) /\ F e. ( Fil ` X ) ) -> ( x e. ( J fLim F ) <-> ( x e. X /\ A. y e. J ( x e. y -> y e. F ) ) ) ) | 
						
							| 93 | 77 15 92 | syl2anc |  |-  ( ph -> ( x e. ( J fLim F ) <-> ( x e. X /\ A. y e. J ( x e. y -> y e. F ) ) ) ) | 
						
							| 94 | 91 93 | sylibrd |  |-  ( ph -> ( x e. ( X \ U. ( B \ F ) ) -> x e. ( J fLim F ) ) ) | 
						
							| 95 | 94 | ssrdv |  |-  ( ph -> ( X \ U. ( B \ F ) ) C_ ( J fLim F ) ) | 
						
							| 96 |  | sseq0 |  |-  ( ( ( X \ U. ( B \ F ) ) C_ ( J fLim F ) /\ ( J fLim F ) = (/) ) -> ( X \ U. ( B \ F ) ) = (/) ) | 
						
							| 97 | 95 6 96 | syl2anc |  |-  ( ph -> ( X \ U. ( B \ F ) ) = (/) ) | 
						
							| 98 |  | ssdif0 |  |-  ( X C_ U. ( B \ F ) <-> ( X \ U. ( B \ F ) ) = (/) ) | 
						
							| 99 | 97 98 | sylibr |  |-  ( ph -> X C_ U. ( B \ F ) ) | 
						
							| 100 |  | difss |  |-  ( B \ F ) C_ B | 
						
							| 101 | 100 | unissi |  |-  U. ( B \ F ) C_ U. B | 
						
							| 102 | 101 2 | sseqtrrid |  |-  ( ph -> U. ( B \ F ) C_ X ) | 
						
							| 103 | 99 102 | eqssd |  |-  ( ph -> X = U. ( B \ F ) ) | 
						
							| 104 | 103 100 | jctil |  |-  ( ph -> ( ( B \ F ) C_ B /\ X = U. ( B \ F ) ) ) | 
						
							| 105 | 20 | difexd |  |-  ( ph -> ( B \ F ) e. _V ) | 
						
							| 106 | 105 | adantr |  |-  ( ( ph /\ ( ( B \ F ) C_ B /\ X = U. ( B \ F ) ) ) -> ( B \ F ) e. _V ) | 
						
							| 107 |  | sseq1 |  |-  ( x = ( B \ F ) -> ( x C_ B <-> ( B \ F ) C_ B ) ) | 
						
							| 108 |  | unieq |  |-  ( x = ( B \ F ) -> U. x = U. ( B \ F ) ) | 
						
							| 109 | 108 | eqeq2d |  |-  ( x = ( B \ F ) -> ( X = U. x <-> X = U. ( B \ F ) ) ) | 
						
							| 110 | 107 109 | anbi12d |  |-  ( x = ( B \ F ) -> ( ( x C_ B /\ X = U. x ) <-> ( ( B \ F ) C_ B /\ X = U. ( B \ F ) ) ) ) | 
						
							| 111 | 110 | anbi2d |  |-  ( x = ( B \ F ) -> ( ( ph /\ ( x C_ B /\ X = U. x ) ) <-> ( ph /\ ( ( B \ F ) C_ B /\ X = U. ( B \ F ) ) ) ) ) | 
						
							| 112 |  | pweq |  |-  ( x = ( B \ F ) -> ~P x = ~P ( B \ F ) ) | 
						
							| 113 | 112 | ineq1d |  |-  ( x = ( B \ F ) -> ( ~P x i^i Fin ) = ( ~P ( B \ F ) i^i Fin ) ) | 
						
							| 114 | 113 | rexeqdv |  |-  ( x = ( B \ F ) -> ( E. y e. ( ~P x i^i Fin ) X = U. y <-> E. y e. ( ~P ( B \ F ) i^i Fin ) X = U. y ) ) | 
						
							| 115 | 111 114 | imbi12d |  |-  ( x = ( B \ F ) -> ( ( ( ph /\ ( x C_ B /\ X = U. x ) ) -> E. y e. ( ~P x i^i Fin ) X = U. y ) <-> ( ( ph /\ ( ( B \ F ) C_ B /\ X = U. ( B \ F ) ) ) -> E. y e. ( ~P ( B \ F ) i^i Fin ) X = U. y ) ) ) | 
						
							| 116 | 115 4 | vtoclg |  |-  ( ( B \ F ) e. _V -> ( ( ph /\ ( ( B \ F ) C_ B /\ X = U. ( B \ F ) ) ) -> E. y e. ( ~P ( B \ F ) i^i Fin ) X = U. y ) ) | 
						
							| 117 | 106 116 | mpcom |  |-  ( ( ph /\ ( ( B \ F ) C_ B /\ X = U. ( B \ F ) ) ) -> E. y e. ( ~P ( B \ F ) i^i Fin ) X = U. y ) | 
						
							| 118 | 104 117 | mpdan |  |-  ( ph -> E. y e. ( ~P ( B \ F ) i^i Fin ) X = U. y ) | 
						
							| 119 |  | unieq |  |-  ( y = (/) -> U. y = U. (/) ) | 
						
							| 120 |  | uni0 |  |-  U. (/) = (/) | 
						
							| 121 | 119 120 | eqtrdi |  |-  ( y = (/) -> U. y = (/) ) | 
						
							| 122 | 121 | neeq2d |  |-  ( y = (/) -> ( X =/= U. y <-> X =/= (/) ) ) | 
						
							| 123 |  | difssd |  |-  ( ( ph /\ y e. ( ~P ( B \ F ) i^i Fin ) ) -> ( X \ z ) C_ X ) | 
						
							| 124 | 123 | ralrimivw |  |-  ( ( ph /\ y e. ( ~P ( B \ F ) i^i Fin ) ) -> A. z e. y ( X \ z ) C_ X ) | 
						
							| 125 |  | riinn0 |  |-  ( ( A. z e. y ( X \ z ) C_ X /\ y =/= (/) ) -> ( X i^i |^|_ z e. y ( X \ z ) ) = |^|_ z e. y ( X \ z ) ) | 
						
							| 126 | 124 125 | sylan |  |-  ( ( ( ph /\ y e. ( ~P ( B \ F ) i^i Fin ) ) /\ y =/= (/) ) -> ( X i^i |^|_ z e. y ( X \ z ) ) = |^|_ z e. y ( X \ z ) ) | 
						
							| 127 | 17 | ad2antrr |  |-  ( ( ( ph /\ y e. ( ~P ( B \ F ) i^i Fin ) ) /\ y =/= (/) ) -> X e. _V ) | 
						
							| 128 | 127 | difexd |  |-  ( ( ( ph /\ y e. ( ~P ( B \ F ) i^i Fin ) ) /\ y =/= (/) ) -> ( X \ z ) e. _V ) | 
						
							| 129 | 128 | ralrimivw |  |-  ( ( ( ph /\ y e. ( ~P ( B \ F ) i^i Fin ) ) /\ y =/= (/) ) -> A. z e. y ( X \ z ) e. _V ) | 
						
							| 130 |  | dfiin2g |  |-  ( A. z e. y ( X \ z ) e. _V -> |^|_ z e. y ( X \ z ) = |^| { x | E. z e. y x = ( X \ z ) } ) | 
						
							| 131 | 129 130 | syl |  |-  ( ( ( ph /\ y e. ( ~P ( B \ F ) i^i Fin ) ) /\ y =/= (/) ) -> |^|_ z e. y ( X \ z ) = |^| { x | E. z e. y x = ( X \ z ) } ) | 
						
							| 132 |  | eqid |  |-  ( z e. y |-> ( X \ z ) ) = ( z e. y |-> ( X \ z ) ) | 
						
							| 133 | 132 | rnmpt |  |-  ran ( z e. y |-> ( X \ z ) ) = { x | E. z e. y x = ( X \ z ) } | 
						
							| 134 | 133 | inteqi |  |-  |^| ran ( z e. y |-> ( X \ z ) ) = |^| { x | E. z e. y x = ( X \ z ) } | 
						
							| 135 | 131 134 | eqtr4di |  |-  ( ( ( ph /\ y e. ( ~P ( B \ F ) i^i Fin ) ) /\ y =/= (/) ) -> |^|_ z e. y ( X \ z ) = |^| ran ( z e. y |-> ( X \ z ) ) ) | 
						
							| 136 | 126 135 | eqtrd |  |-  ( ( ( ph /\ y e. ( ~P ( B \ F ) i^i Fin ) ) /\ y =/= (/) ) -> ( X i^i |^|_ z e. y ( X \ z ) ) = |^| ran ( z e. y |-> ( X \ z ) ) ) | 
						
							| 137 | 15 | ad2antrr |  |-  ( ( ( ph /\ y e. ( ~P ( B \ F ) i^i Fin ) ) /\ y =/= (/) ) -> F e. ( Fil ` X ) ) | 
						
							| 138 |  | elfpw |  |-  ( y e. ( ~P ( B \ F ) i^i Fin ) <-> ( y C_ ( B \ F ) /\ y e. Fin ) ) | 
						
							| 139 | 138 | simplbi |  |-  ( y e. ( ~P ( B \ F ) i^i Fin ) -> y C_ ( B \ F ) ) | 
						
							| 140 | 139 | ad2antlr |  |-  ( ( ( ph /\ y e. ( ~P ( B \ F ) i^i Fin ) ) /\ y =/= (/) ) -> y C_ ( B \ F ) ) | 
						
							| 141 | 140 | sselda |  |-  ( ( ( ( ph /\ y e. ( ~P ( B \ F ) i^i Fin ) ) /\ y =/= (/) ) /\ z e. y ) -> z e. ( B \ F ) ) | 
						
							| 142 | 141 | eldifbd |  |-  ( ( ( ( ph /\ y e. ( ~P ( B \ F ) i^i Fin ) ) /\ y =/= (/) ) /\ z e. y ) -> -. z e. F ) | 
						
							| 143 | 5 | ad3antrrr |  |-  ( ( ( ( ph /\ y e. ( ~P ( B \ F ) i^i Fin ) ) /\ y =/= (/) ) /\ z e. y ) -> F e. ( UFil ` X ) ) | 
						
							| 144 | 140 | difss2d |  |-  ( ( ( ph /\ y e. ( ~P ( B \ F ) i^i Fin ) ) /\ y =/= (/) ) -> y C_ B ) | 
						
							| 145 | 144 | sselda |  |-  ( ( ( ( ph /\ y e. ( ~P ( B \ F ) i^i Fin ) ) /\ y =/= (/) ) /\ z e. y ) -> z e. B ) | 
						
							| 146 |  | elssuni |  |-  ( z e. B -> z C_ U. B ) | 
						
							| 147 | 145 146 | syl |  |-  ( ( ( ( ph /\ y e. ( ~P ( B \ F ) i^i Fin ) ) /\ y =/= (/) ) /\ z e. y ) -> z C_ U. B ) | 
						
							| 148 | 2 | ad3antrrr |  |-  ( ( ( ( ph /\ y e. ( ~P ( B \ F ) i^i Fin ) ) /\ y =/= (/) ) /\ z e. y ) -> X = U. B ) | 
						
							| 149 | 147 148 | sseqtrrd |  |-  ( ( ( ( ph /\ y e. ( ~P ( B \ F ) i^i Fin ) ) /\ y =/= (/) ) /\ z e. y ) -> z C_ X ) | 
						
							| 150 |  | ufilb |  |-  ( ( F e. ( UFil ` X ) /\ z C_ X ) -> ( -. z e. F <-> ( X \ z ) e. F ) ) | 
						
							| 151 | 143 149 150 | syl2anc |  |-  ( ( ( ( ph /\ y e. ( ~P ( B \ F ) i^i Fin ) ) /\ y =/= (/) ) /\ z e. y ) -> ( -. z e. F <-> ( X \ z ) e. F ) ) | 
						
							| 152 | 142 151 | mpbid |  |-  ( ( ( ( ph /\ y e. ( ~P ( B \ F ) i^i Fin ) ) /\ y =/= (/) ) /\ z e. y ) -> ( X \ z ) e. F ) | 
						
							| 153 | 152 | fmpttd |  |-  ( ( ( ph /\ y e. ( ~P ( B \ F ) i^i Fin ) ) /\ y =/= (/) ) -> ( z e. y |-> ( X \ z ) ) : y --> F ) | 
						
							| 154 | 153 | frnd |  |-  ( ( ( ph /\ y e. ( ~P ( B \ F ) i^i Fin ) ) /\ y =/= (/) ) -> ran ( z e. y |-> ( X \ z ) ) C_ F ) | 
						
							| 155 | 132 152 | dmmptd |  |-  ( ( ( ph /\ y e. ( ~P ( B \ F ) i^i Fin ) ) /\ y =/= (/) ) -> dom ( z e. y |-> ( X \ z ) ) = y ) | 
						
							| 156 |  | simpr |  |-  ( ( ( ph /\ y e. ( ~P ( B \ F ) i^i Fin ) ) /\ y =/= (/) ) -> y =/= (/) ) | 
						
							| 157 | 155 156 | eqnetrd |  |-  ( ( ( ph /\ y e. ( ~P ( B \ F ) i^i Fin ) ) /\ y =/= (/) ) -> dom ( z e. y |-> ( X \ z ) ) =/= (/) ) | 
						
							| 158 |  | dm0rn0 |  |-  ( dom ( z e. y |-> ( X \ z ) ) = (/) <-> ran ( z e. y |-> ( X \ z ) ) = (/) ) | 
						
							| 159 | 158 | necon3bii |  |-  ( dom ( z e. y |-> ( X \ z ) ) =/= (/) <-> ran ( z e. y |-> ( X \ z ) ) =/= (/) ) | 
						
							| 160 | 157 159 | sylib |  |-  ( ( ( ph /\ y e. ( ~P ( B \ F ) i^i Fin ) ) /\ y =/= (/) ) -> ran ( z e. y |-> ( X \ z ) ) =/= (/) ) | 
						
							| 161 |  | elinel2 |  |-  ( y e. ( ~P ( B \ F ) i^i Fin ) -> y e. Fin ) | 
						
							| 162 | 161 | ad2antlr |  |-  ( ( ( ph /\ y e. ( ~P ( B \ F ) i^i Fin ) ) /\ y =/= (/) ) -> y e. Fin ) | 
						
							| 163 |  | abrexfi |  |-  ( y e. Fin -> { x | E. z e. y x = ( X \ z ) } e. Fin ) | 
						
							| 164 | 133 163 | eqeltrid |  |-  ( y e. Fin -> ran ( z e. y |-> ( X \ z ) ) e. Fin ) | 
						
							| 165 | 162 164 | syl |  |-  ( ( ( ph /\ y e. ( ~P ( B \ F ) i^i Fin ) ) /\ y =/= (/) ) -> ran ( z e. y |-> ( X \ z ) ) e. Fin ) | 
						
							| 166 |  | filintn0 |  |-  ( ( F e. ( Fil ` X ) /\ ( ran ( z e. y |-> ( X \ z ) ) C_ F /\ ran ( z e. y |-> ( X \ z ) ) =/= (/) /\ ran ( z e. y |-> ( X \ z ) ) e. Fin ) ) -> |^| ran ( z e. y |-> ( X \ z ) ) =/= (/) ) | 
						
							| 167 | 137 154 160 165 166 | syl13anc |  |-  ( ( ( ph /\ y e. ( ~P ( B \ F ) i^i Fin ) ) /\ y =/= (/) ) -> |^| ran ( z e. y |-> ( X \ z ) ) =/= (/) ) | 
						
							| 168 | 136 167 | eqnetrd |  |-  ( ( ( ph /\ y e. ( ~P ( B \ F ) i^i Fin ) ) /\ y =/= (/) ) -> ( X i^i |^|_ z e. y ( X \ z ) ) =/= (/) ) | 
						
							| 169 |  | disj3 |  |-  ( ( X i^i |^|_ z e. y ( X \ z ) ) = (/) <-> X = ( X \ |^|_ z e. y ( X \ z ) ) ) | 
						
							| 170 | 169 | necon3bii |  |-  ( ( X i^i |^|_ z e. y ( X \ z ) ) =/= (/) <-> X =/= ( X \ |^|_ z e. y ( X \ z ) ) ) | 
						
							| 171 | 168 170 | sylib |  |-  ( ( ( ph /\ y e. ( ~P ( B \ F ) i^i Fin ) ) /\ y =/= (/) ) -> X =/= ( X \ |^|_ z e. y ( X \ z ) ) ) | 
						
							| 172 |  | iundif2 |  |-  U_ z e. y ( X \ ( X \ z ) ) = ( X \ |^|_ z e. y ( X \ z ) ) | 
						
							| 173 |  | dfss4 |  |-  ( z C_ X <-> ( X \ ( X \ z ) ) = z ) | 
						
							| 174 | 149 173 | sylib |  |-  ( ( ( ( ph /\ y e. ( ~P ( B \ F ) i^i Fin ) ) /\ y =/= (/) ) /\ z e. y ) -> ( X \ ( X \ z ) ) = z ) | 
						
							| 175 | 174 | iuneq2dv |  |-  ( ( ( ph /\ y e. ( ~P ( B \ F ) i^i Fin ) ) /\ y =/= (/) ) -> U_ z e. y ( X \ ( X \ z ) ) = U_ z e. y z ) | 
						
							| 176 |  | uniiun |  |-  U. y = U_ z e. y z | 
						
							| 177 | 175 176 | eqtr4di |  |-  ( ( ( ph /\ y e. ( ~P ( B \ F ) i^i Fin ) ) /\ y =/= (/) ) -> U_ z e. y ( X \ ( X \ z ) ) = U. y ) | 
						
							| 178 | 172 177 | eqtr3id |  |-  ( ( ( ph /\ y e. ( ~P ( B \ F ) i^i Fin ) ) /\ y =/= (/) ) -> ( X \ |^|_ z e. y ( X \ z ) ) = U. y ) | 
						
							| 179 | 171 178 | neeqtrd |  |-  ( ( ( ph /\ y e. ( ~P ( B \ F ) i^i Fin ) ) /\ y =/= (/) ) -> X =/= U. y ) | 
						
							| 180 | 15 | adantr |  |-  ( ( ph /\ y e. ( ~P ( B \ F ) i^i Fin ) ) -> F e. ( Fil ` X ) ) | 
						
							| 181 |  | filtop |  |-  ( F e. ( Fil ` X ) -> X e. F ) | 
						
							| 182 |  | fileln0 |  |-  ( ( F e. ( Fil ` X ) /\ X e. F ) -> X =/= (/) ) | 
						
							| 183 | 180 181 182 | syl2anc2 |  |-  ( ( ph /\ y e. ( ~P ( B \ F ) i^i Fin ) ) -> X =/= (/) ) | 
						
							| 184 | 122 179 183 | pm2.61ne |  |-  ( ( ph /\ y e. ( ~P ( B \ F ) i^i Fin ) ) -> X =/= U. y ) | 
						
							| 185 | 184 | neneqd |  |-  ( ( ph /\ y e. ( ~P ( B \ F ) i^i Fin ) ) -> -. X = U. y ) | 
						
							| 186 | 185 | nrexdv |  |-  ( ph -> -. E. y e. ( ~P ( B \ F ) i^i Fin ) X = U. y ) | 
						
							| 187 | 118 186 | pm2.65i |  |-  -. ph |