Metamath Proof Explorer


Theorem alfal

Description: For all sets, -. F. is true. (Contributed by Anthony Hart, 13-Sep-2011)

Ref Expression
Assertion alfal
|- A. x -. F.

Proof

Step Hyp Ref Expression
1 fal
 |-  -. F.
2 1 ax-gen
 |-  A. x -. F.