Step |
Hyp |
Ref |
Expression |
1 |
|
algcvga.1 |
|- F : S --> S |
2 |
|
algcvga.2 |
|- R = seq 0 ( ( F o. 1st ) , ( NN0 X. { A } ) ) |
3 |
|
algcvga.3 |
|- C : S --> NN0 |
4 |
|
algcvga.4 |
|- ( z e. S -> ( ( C ` ( F ` z ) ) =/= 0 -> ( C ` ( F ` z ) ) < ( C ` z ) ) ) |
5 |
|
algcvga.5 |
|- N = ( C ` A ) |
6 |
3
|
ffvelrni |
|- ( A e. S -> ( C ` A ) e. NN0 ) |
7 |
5 6
|
eqeltrid |
|- ( A e. S -> N e. NN0 ) |
8 |
|
nn0z |
|- ( N e. NN0 -> N e. ZZ ) |
9 |
|
eluz1 |
|- ( N e. ZZ -> ( K e. ( ZZ>= ` N ) <-> ( K e. ZZ /\ N <_ K ) ) ) |
10 |
|
2fveq3 |
|- ( m = N -> ( C ` ( R ` m ) ) = ( C ` ( R ` N ) ) ) |
11 |
10
|
eqeq1d |
|- ( m = N -> ( ( C ` ( R ` m ) ) = 0 <-> ( C ` ( R ` N ) ) = 0 ) ) |
12 |
11
|
imbi2d |
|- ( m = N -> ( ( A e. S -> ( C ` ( R ` m ) ) = 0 ) <-> ( A e. S -> ( C ` ( R ` N ) ) = 0 ) ) ) |
13 |
|
2fveq3 |
|- ( m = k -> ( C ` ( R ` m ) ) = ( C ` ( R ` k ) ) ) |
14 |
13
|
eqeq1d |
|- ( m = k -> ( ( C ` ( R ` m ) ) = 0 <-> ( C ` ( R ` k ) ) = 0 ) ) |
15 |
14
|
imbi2d |
|- ( m = k -> ( ( A e. S -> ( C ` ( R ` m ) ) = 0 ) <-> ( A e. S -> ( C ` ( R ` k ) ) = 0 ) ) ) |
16 |
|
2fveq3 |
|- ( m = ( k + 1 ) -> ( C ` ( R ` m ) ) = ( C ` ( R ` ( k + 1 ) ) ) ) |
17 |
16
|
eqeq1d |
|- ( m = ( k + 1 ) -> ( ( C ` ( R ` m ) ) = 0 <-> ( C ` ( R ` ( k + 1 ) ) ) = 0 ) ) |
18 |
17
|
imbi2d |
|- ( m = ( k + 1 ) -> ( ( A e. S -> ( C ` ( R ` m ) ) = 0 ) <-> ( A e. S -> ( C ` ( R ` ( k + 1 ) ) ) = 0 ) ) ) |
19 |
|
2fveq3 |
|- ( m = K -> ( C ` ( R ` m ) ) = ( C ` ( R ` K ) ) ) |
20 |
19
|
eqeq1d |
|- ( m = K -> ( ( C ` ( R ` m ) ) = 0 <-> ( C ` ( R ` K ) ) = 0 ) ) |
21 |
20
|
imbi2d |
|- ( m = K -> ( ( A e. S -> ( C ` ( R ` m ) ) = 0 ) <-> ( A e. S -> ( C ` ( R ` K ) ) = 0 ) ) ) |
22 |
1 2 3 4 5
|
algcvg |
|- ( A e. S -> ( C ` ( R ` N ) ) = 0 ) |
23 |
22
|
a1i |
|- ( N e. ZZ -> ( A e. S -> ( C ` ( R ` N ) ) = 0 ) ) |
24 |
|
nn0ge0 |
|- ( N e. NN0 -> 0 <_ N ) |
25 |
24
|
adantr |
|- ( ( N e. NN0 /\ k e. ZZ ) -> 0 <_ N ) |
26 |
|
0re |
|- 0 e. RR |
27 |
|
nn0re |
|- ( N e. NN0 -> N e. RR ) |
28 |
|
zre |
|- ( k e. ZZ -> k e. RR ) |
29 |
|
letr |
|- ( ( 0 e. RR /\ N e. RR /\ k e. RR ) -> ( ( 0 <_ N /\ N <_ k ) -> 0 <_ k ) ) |
30 |
26 27 28 29
|
mp3an3an |
|- ( ( N e. NN0 /\ k e. ZZ ) -> ( ( 0 <_ N /\ N <_ k ) -> 0 <_ k ) ) |
31 |
25 30
|
mpand |
|- ( ( N e. NN0 /\ k e. ZZ ) -> ( N <_ k -> 0 <_ k ) ) |
32 |
|
elnn0z |
|- ( k e. NN0 <-> ( k e. ZZ /\ 0 <_ k ) ) |
33 |
32
|
simplbi2 |
|- ( k e. ZZ -> ( 0 <_ k -> k e. NN0 ) ) |
34 |
33
|
adantl |
|- ( ( N e. NN0 /\ k e. ZZ ) -> ( 0 <_ k -> k e. NN0 ) ) |
35 |
31 34
|
syld |
|- ( ( N e. NN0 /\ k e. ZZ ) -> ( N <_ k -> k e. NN0 ) ) |
36 |
7 35
|
sylan |
|- ( ( A e. S /\ k e. ZZ ) -> ( N <_ k -> k e. NN0 ) ) |
37 |
36
|
impr |
|- ( ( A e. S /\ ( k e. ZZ /\ N <_ k ) ) -> k e. NN0 ) |
38 |
37
|
expcom |
|- ( ( k e. ZZ /\ N <_ k ) -> ( A e. S -> k e. NN0 ) ) |
39 |
38
|
3adant1 |
|- ( ( N e. ZZ /\ k e. ZZ /\ N <_ k ) -> ( A e. S -> k e. NN0 ) ) |
40 |
39
|
ancld |
|- ( ( N e. ZZ /\ k e. ZZ /\ N <_ k ) -> ( A e. S -> ( A e. S /\ k e. NN0 ) ) ) |
41 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
42 |
|
0zd |
|- ( A e. S -> 0 e. ZZ ) |
43 |
|
id |
|- ( A e. S -> A e. S ) |
44 |
1
|
a1i |
|- ( A e. S -> F : S --> S ) |
45 |
41 2 42 43 44
|
algrf |
|- ( A e. S -> R : NN0 --> S ) |
46 |
45
|
ffvelrnda |
|- ( ( A e. S /\ k e. NN0 ) -> ( R ` k ) e. S ) |
47 |
|
2fveq3 |
|- ( z = ( R ` k ) -> ( C ` ( F ` z ) ) = ( C ` ( F ` ( R ` k ) ) ) ) |
48 |
47
|
neeq1d |
|- ( z = ( R ` k ) -> ( ( C ` ( F ` z ) ) =/= 0 <-> ( C ` ( F ` ( R ` k ) ) ) =/= 0 ) ) |
49 |
|
fveq2 |
|- ( z = ( R ` k ) -> ( C ` z ) = ( C ` ( R ` k ) ) ) |
50 |
47 49
|
breq12d |
|- ( z = ( R ` k ) -> ( ( C ` ( F ` z ) ) < ( C ` z ) <-> ( C ` ( F ` ( R ` k ) ) ) < ( C ` ( R ` k ) ) ) ) |
51 |
48 50
|
imbi12d |
|- ( z = ( R ` k ) -> ( ( ( C ` ( F ` z ) ) =/= 0 -> ( C ` ( F ` z ) ) < ( C ` z ) ) <-> ( ( C ` ( F ` ( R ` k ) ) ) =/= 0 -> ( C ` ( F ` ( R ` k ) ) ) < ( C ` ( R ` k ) ) ) ) ) |
52 |
51 4
|
vtoclga |
|- ( ( R ` k ) e. S -> ( ( C ` ( F ` ( R ` k ) ) ) =/= 0 -> ( C ` ( F ` ( R ` k ) ) ) < ( C ` ( R ` k ) ) ) ) |
53 |
1 3
|
algcvgb |
|- ( ( R ` k ) e. S -> ( ( ( C ` ( F ` ( R ` k ) ) ) =/= 0 -> ( C ` ( F ` ( R ` k ) ) ) < ( C ` ( R ` k ) ) ) <-> ( ( ( C ` ( R ` k ) ) =/= 0 -> ( C ` ( F ` ( R ` k ) ) ) < ( C ` ( R ` k ) ) ) /\ ( ( C ` ( R ` k ) ) = 0 -> ( C ` ( F ` ( R ` k ) ) ) = 0 ) ) ) ) |
54 |
|
simpr |
|- ( ( ( ( C ` ( R ` k ) ) =/= 0 -> ( C ` ( F ` ( R ` k ) ) ) < ( C ` ( R ` k ) ) ) /\ ( ( C ` ( R ` k ) ) = 0 -> ( C ` ( F ` ( R ` k ) ) ) = 0 ) ) -> ( ( C ` ( R ` k ) ) = 0 -> ( C ` ( F ` ( R ` k ) ) ) = 0 ) ) |
55 |
53 54
|
syl6bi |
|- ( ( R ` k ) e. S -> ( ( ( C ` ( F ` ( R ` k ) ) ) =/= 0 -> ( C ` ( F ` ( R ` k ) ) ) < ( C ` ( R ` k ) ) ) -> ( ( C ` ( R ` k ) ) = 0 -> ( C ` ( F ` ( R ` k ) ) ) = 0 ) ) ) |
56 |
52 55
|
mpd |
|- ( ( R ` k ) e. S -> ( ( C ` ( R ` k ) ) = 0 -> ( C ` ( F ` ( R ` k ) ) ) = 0 ) ) |
57 |
46 56
|
syl |
|- ( ( A e. S /\ k e. NN0 ) -> ( ( C ` ( R ` k ) ) = 0 -> ( C ` ( F ` ( R ` k ) ) ) = 0 ) ) |
58 |
41 2 42 43 44
|
algrp1 |
|- ( ( A e. S /\ k e. NN0 ) -> ( R ` ( k + 1 ) ) = ( F ` ( R ` k ) ) ) |
59 |
58
|
fveqeq2d |
|- ( ( A e. S /\ k e. NN0 ) -> ( ( C ` ( R ` ( k + 1 ) ) ) = 0 <-> ( C ` ( F ` ( R ` k ) ) ) = 0 ) ) |
60 |
57 59
|
sylibrd |
|- ( ( A e. S /\ k e. NN0 ) -> ( ( C ` ( R ` k ) ) = 0 -> ( C ` ( R ` ( k + 1 ) ) ) = 0 ) ) |
61 |
40 60
|
syl6 |
|- ( ( N e. ZZ /\ k e. ZZ /\ N <_ k ) -> ( A e. S -> ( ( C ` ( R ` k ) ) = 0 -> ( C ` ( R ` ( k + 1 ) ) ) = 0 ) ) ) |
62 |
61
|
a2d |
|- ( ( N e. ZZ /\ k e. ZZ /\ N <_ k ) -> ( ( A e. S -> ( C ` ( R ` k ) ) = 0 ) -> ( A e. S -> ( C ` ( R ` ( k + 1 ) ) ) = 0 ) ) ) |
63 |
12 15 18 21 23 62
|
uzind |
|- ( ( N e. ZZ /\ K e. ZZ /\ N <_ K ) -> ( A e. S -> ( C ` ( R ` K ) ) = 0 ) ) |
64 |
63
|
3expib |
|- ( N e. ZZ -> ( ( K e. ZZ /\ N <_ K ) -> ( A e. S -> ( C ` ( R ` K ) ) = 0 ) ) ) |
65 |
9 64
|
sylbid |
|- ( N e. ZZ -> ( K e. ( ZZ>= ` N ) -> ( A e. S -> ( C ` ( R ` K ) ) = 0 ) ) ) |
66 |
8 65
|
syl |
|- ( N e. NN0 -> ( K e. ( ZZ>= ` N ) -> ( A e. S -> ( C ` ( R ` K ) ) = 0 ) ) ) |
67 |
66
|
com3r |
|- ( A e. S -> ( N e. NN0 -> ( K e. ( ZZ>= ` N ) -> ( C ` ( R ` K ) ) = 0 ) ) ) |
68 |
7 67
|
mpd |
|- ( A e. S -> ( K e. ( ZZ>= ` N ) -> ( C ` ( R ` K ) ) = 0 ) ) |